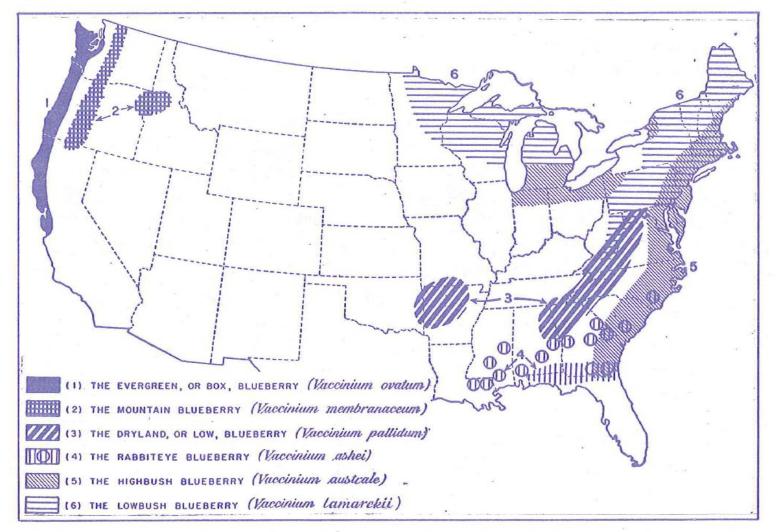




### Blueberry Automated Quasi-Pulse Irrigation


John Strang, Tim Coolong, Richard Warner Otto Hoffmann & John Snyder



Funded by a Natural Resources Conservation Service (NRCS) Conservation Innovation Grant



### Blueberries Native to US Wild species harvested



1978 USDA Farmers' Bulletin No. 2254, Commercial Blueberry Growing

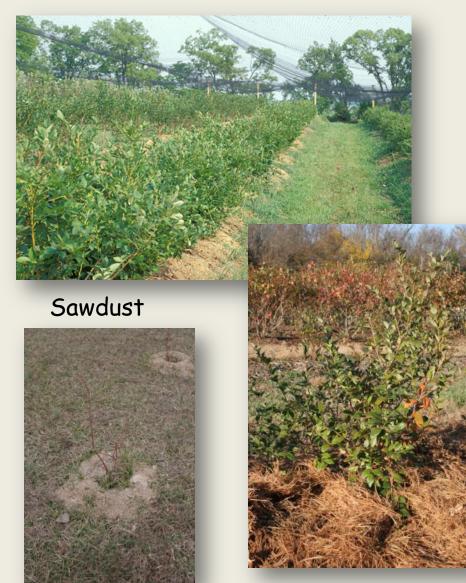
### Blueberry Native Habitat



Blueberry bog Black Moshannon State Park Philipsburg, PA Note: Plants grow on mounds above the water



Native Americans called them "Starberries" Often dried for stews and pemmican


> Wild highbush blueberry

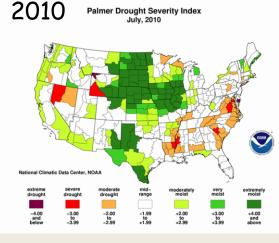
# Raised Beds

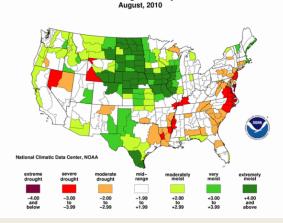
### Phytophthora Root Rot losses



# Mulching

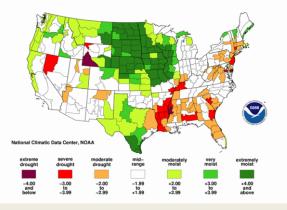



Pine needles

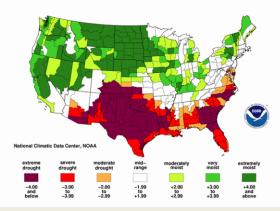

- Suppresses weeds
- Moderates soil temperature
- Conserves moisture
- Releases nutrients



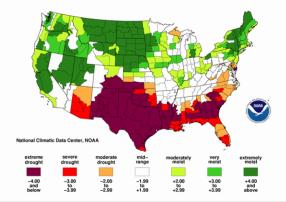
Tree trimmings


# 2010 - Second driest season on record in 110 Years 2011 - Wettest season on record, Lexington Seemed very dry in west KY

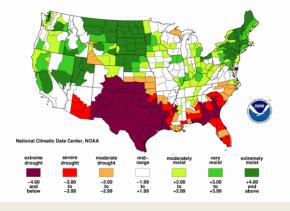





Palmer Drought Severity Index


Palmer Drought Severity Index September, 2010




2011 Palmer Drought Severity Index July, 2011



Palmer Drought Severity Index August, 2011



Palmer Drought Severity Index September, 2011



### 2011 - Variable Across the State

### Rainfall

- Jan.
  - 2" below normal
- Feb.-June
  - 12.6" above normal
- Jul-Aug.
  - 1.9" below normal
- Sept.
  - 2" above normal

### <u>Temperature</u>

- Dec.
  - 8.8 °F below normal
- Jan.
  - 2.9 °F below normal
- Feb-June
  - Above normal
- April & July
  - 4 °F above normal
- Sept.
  - 3 °F below normal

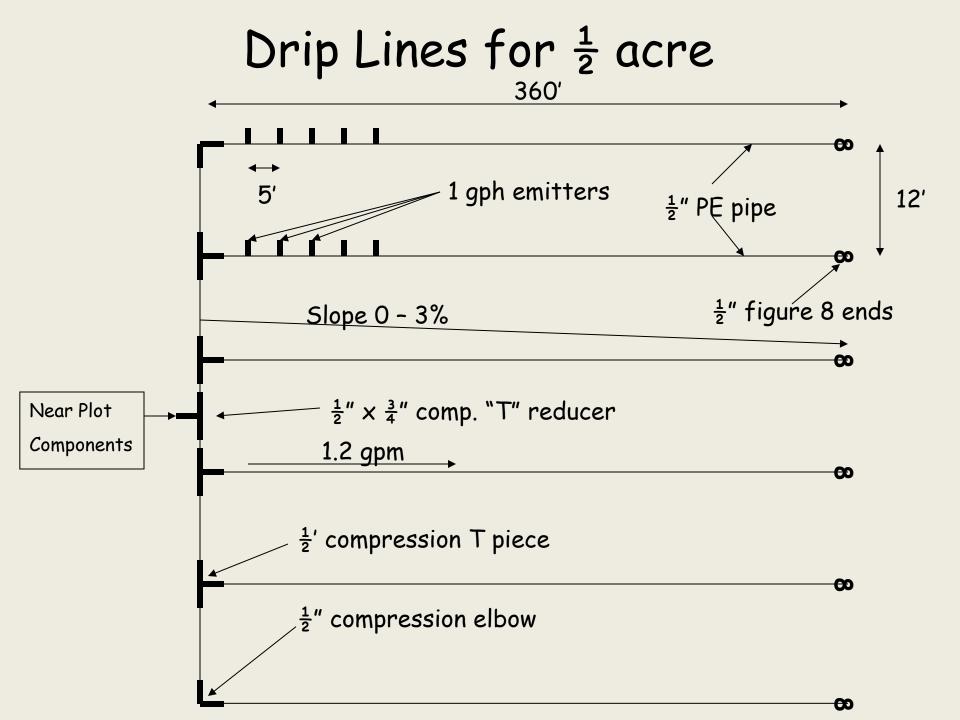
- Root system is relatively shallow and forms an inverted cone.
- Greatest bulk
  - Top 9" of soil
  - Few larger roots extend down to 30"
- Most roots grow parallel to the soil surface and a few roots extend out from the plant as far as 2 yards,.
  - -50% are within 1'
  - 84% are within 2' of the crown
- Normally found in the decomposing mulch, but not in the upper undecomposed mulch

### Roots

- The highbush root system is <u>larger</u> than that of the rabbiteye, but is <u>less efficient</u> in nutrient uptake.
- Blueberry roots show little lateral transport of nutrients and water.
  - Fertilizer must be spread in a circle around the plant.
  - Water must also be well distributed around the plant.
  - Thus 2 emitters per plant

### Roots




- Roots remain active below ground up to midwinter
- As temperatures drop below 45°F winter roots become brown
  - Secondary thickening
  - Formation of lignin
  - Occurs first in shallow roots
  - Root tips remain white and capable of absorbing water

# Irrigating to saturate soil

- An ideal loam soil will be:
  - 45% "soil" ie. minerals
  - 25% micropores (small air spaces between soil particles-hold water)
  - 25% macropores (root and worm holes, etc-hold air and water)
  - 5% organic material



Photo Courtesy: Tim Coolong



### Traditional Drip System Operation

- Grower assesses soil water content
  - Visual/soil feel
  - Tensiometer measurement
- Manually turns water system on and shuts off when plants are sufficiently wet



### Solid-state Controller



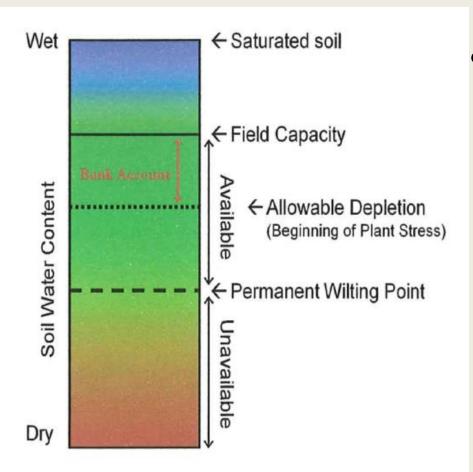


# **Operating Time**

- $\frac{1}{4}$ " water/day (*maximum ~1,300 gal/day*)
- 3 gal/day/plant (5 ft plant spacing)
- 1 gal/hr emitter 3 hours
- Options
  - 2 times per day for  $1\frac{1}{2}$  hour
  - 3 times per day for 1 hour
  - 6 times per day for  $\frac{1}{2}$  hour
- \*Note these are expected to be the maximum irrigation rates during critical growing conditions

### Irrigation Scheduling

- Traditionally,  $\frac{1}{2}$  hours to 3 hours per zone
- Problem
  - Field observations show some of the irrigation water infiltrates below root depth if watering lasts more than 20 minutes
  - Due to macropores (cracks in soil from decayed roots, worm holes, etc.)
  - Macropores enable water to quickly infiltrate to depths of 1 ft to 3 ft (or greater)


# Study Purpose

- Reduce irrigation water loss by eliminating water movement below the plant root system.
- Reduce water use by pulsing the water on.
- Automate the trickle irrigation process.
- Provide an affordable low cost system useful for growers.

- Don't kill the plants!
  - Blueberries do not have root hairs and it is more difficult for them to take up water.



### Soil Water Content



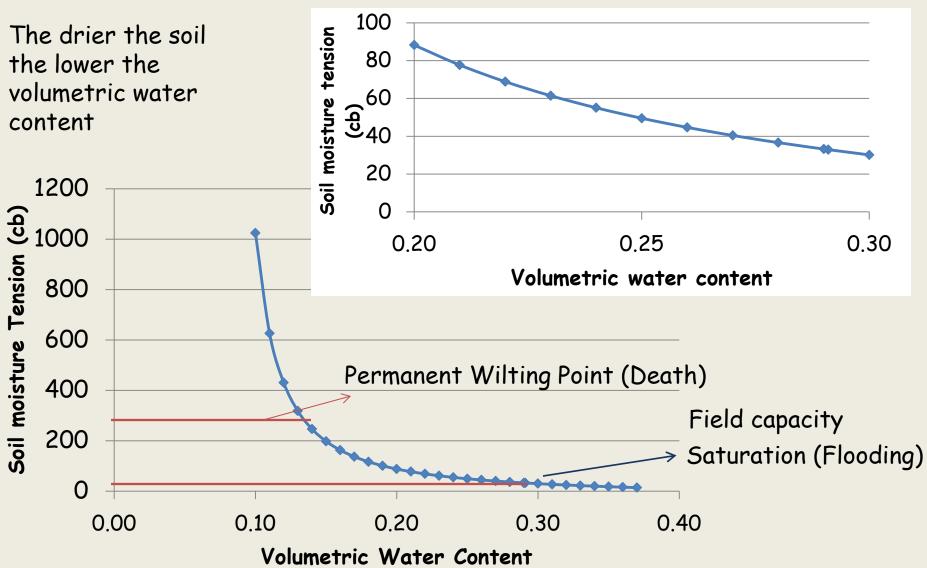

 Ideally soil moisture is maintained between field capacity and the allowable depletion point

Figure courtesy: Utah State Univ., Brent Black Volumetric water content =

Volume of water

Soil volume + Water volume + Air space

Moisture release curve for silt loam



### Previous Systems (2008-2009 Blueberries & Blackberries)

- Based on automatic tensiometers
  - On = 30 cb & off = 10 cb
  - Soil moisture varied widely in short distance
  - Difficult to place tensiometers to represent area
  - Tensiometers loose contact with soil when too dry and cease functioning
- Required electricity
  - Wire is expensive
- Blackberries removed the water as fast as it was pulsed in for short intervals when it was hot and used even more water



### System Characteristics for Blueberries

- Automated
- Quasi-Pulsed
- Function at low soil moisture levels
- Low cost

### Sensors Located Next to One Plant at Each Site

Manual Treatment

Automated Treatment



Manually irrigated by grower based on experience and tensiometer(s)





Automatically irrigated based on buried Watermark sensor



### System Components for Quasi-Pulse Irrigation

Watermark sensors from Irrometer Co., Inc



- Solid state electrical resistance devices
- Buried permanently?
- Range 0-200 centabars
- Irrigates based on average between 2 sensors



Sensors 12" from plant and emitter

### System Components for Quasi-pulse Irrigation



Set desired soil moisture level on dial

WEM allows irrigation if soil moisture is above set level

System set to irrigate 8 times in 24 hrs at 3 hour intervals.



Battery powered Hunter Controller for irrigation timing



# Quasi-pulse System Cost

| Item                          | Quasi- pulse<br>Cost Estimate |
|-------------------------------|-------------------------------|
| Hunter controller             | \$90                          |
| Water meter <sup>1</sup>      | \$105                         |
| Hunter PGV valve <sup>2</sup> | \$15                          |
| Watermark system <sup>3</sup> | \$200                         |
| Watermark meter <sup>4</sup>  | \$330                         |
| Total                         | \$740.00                      |



<sup>1</sup>Optional to track water consumption

<sup>2</sup>Based on 1" PVC valve

<sup>3</sup>Two sensor system with battery controller (Type WEM-B)

<sup>4</sup>Optional - to acquire moisture levels from Watermark sensors

# Table 2. Recommended Watermark<sup>™</sup> sensor values at which to irrigate.

-

-

| Soil Type                                                       | Irrigation Needed        |  |
|-----------------------------------------------------------------|--------------------------|--|
|                                                                 | (centibars)              |  |
| Loamy sand                                                      | 40 - 50                  |  |
| Sandy loam                                                      | <b>——</b> 50 - 70        |  |
| Loam                                                            | 60 - 90                  |  |
| Silt loam, silt                                                 | <b>——</b> 70 <b>-</b> 90 |  |
| Clay loam or clay                                               | 90 - 120                 |  |
| <sup>TM</sup> Watermark is a registered trademark of Irrometer, |                          |  |
| Co., Riverside, CA                                              |                          |  |


# Early Season Adjustment



• 2010

- Adjusted Watermark Module from 5 to 7 in late July for all sites.
- 2011
  - Watermark Modules set to 7 for season.

### Solenoid & Water Meter



### Rainfall Measurement



Tipping bucket Measures 1/100" rainfall McCormick & Reed sites



### Additional Components for Research that A Grower Would Not Need



- Data loggers
  - Rainfall
    - Logged each 1/100" rainfall
  - Manual system operation
  - Quasi-pulsed system operation
  - Logged each second of each irrigation system operation

### Additional Components for Research -(Decagon Soil Moisture Sensors)

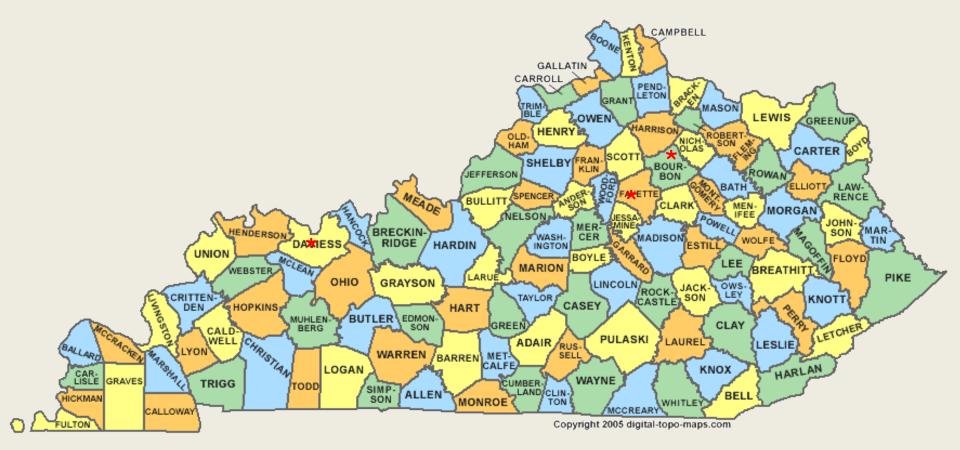




Sensor depth 6" & 12" 2 for manual irrigated bush 2 for quasi-pulsed irrigated bush






### Burl & Otto



Chris

Patrick

### Grower Demonstration Plot Locations



### Nancy & Royce McCormick Owensboro,KY

- 2010
  - Plants spaced 4' X 14'
  - Emitters spaced 1' apart
  - Jun. 7, 2010 Installed
  - Jul. 23, 2010 Watermark sensor switched from 5 to 7
  - Oct. 16, 2010 Shut down

• 2011

JUNE & JULY

- Jun. 7, 2011 Started
- Oct. 24, 2011 Shut down

Photos courtesy Stephen Patton

### McCormick Blueberries



"Darrow" blueberry



### Raised mulched beds Silt clay soil

### Dana & Trudie Reed Paris, KY



Photo courtesy: Stephen Patton



5 year-old "Spartan" blueberries Left row pulsed, right row manually irrigated

Slightly raised mulched beds Silt clay soil

### **Reed Blueberries**



Quasi-pulse Irrigated



Manually Irrigated

### • 2010

- Plants spaced 4' X 14'
- Inline emitters spaced 3' apart
- Jun. 2, 2010 Installed
- Jul. 28, 2010
   Watermark sensor
   switched from 5 to 7
- Oct. 28, 2010 Shut down
- 2011
  - Jun. 9, 2011 Started
  - Oct. 3, 2011 Shut down



Photo courtesy: Stephen Patton

## Cal, Judi & Kit Blake

Lexington, KY

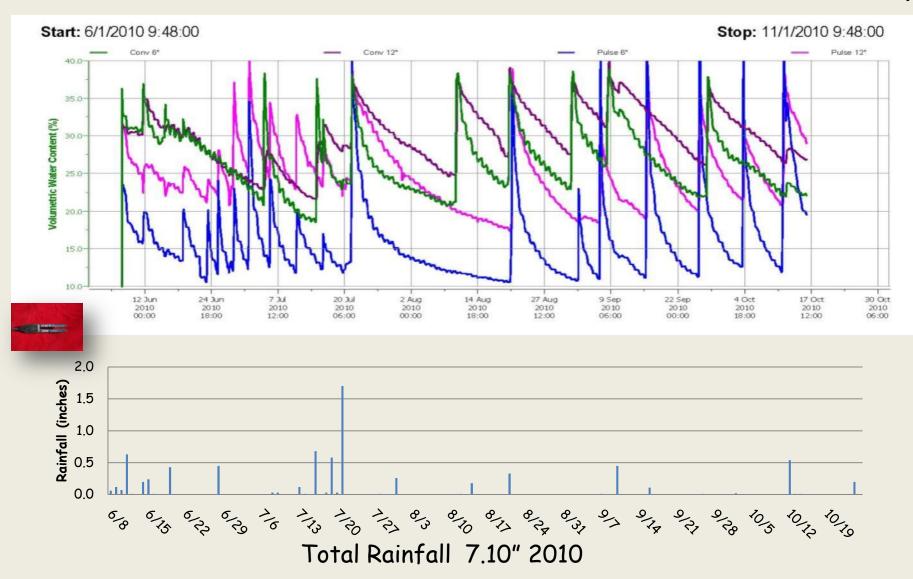




'Nelson' & 'Jersey' blueberries planted in 2002 RBD

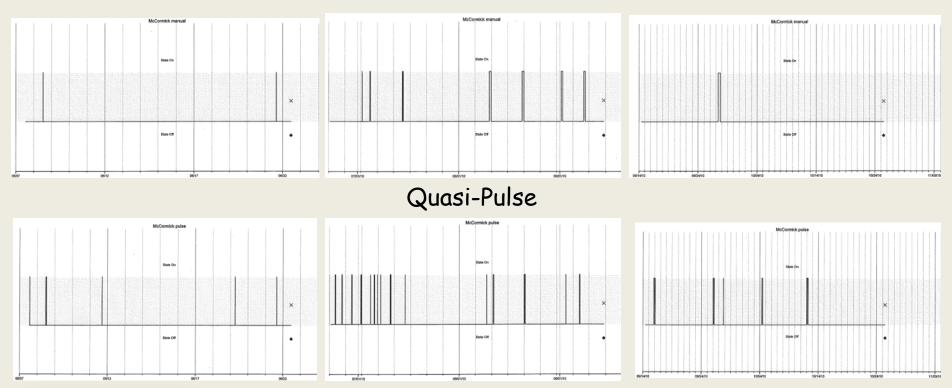





Flat unmulched beds Maury silt loam soil

# Blake Blueberries




- 2010
  - Plants spaced 5.7' X 14'
  - 2 Emitters per plant
  - Jun. 7, 2010 Installed
  - Jul. 17, 2010 Watermark sensor switched from 5 to 7
  - Oct. 26, 2010 shut down
  - Designed with pulsed and manual drip tubes in each row
- 2011
  - Jun. 8, 2011 Started
  - Sept. 29, 2011 Shut down

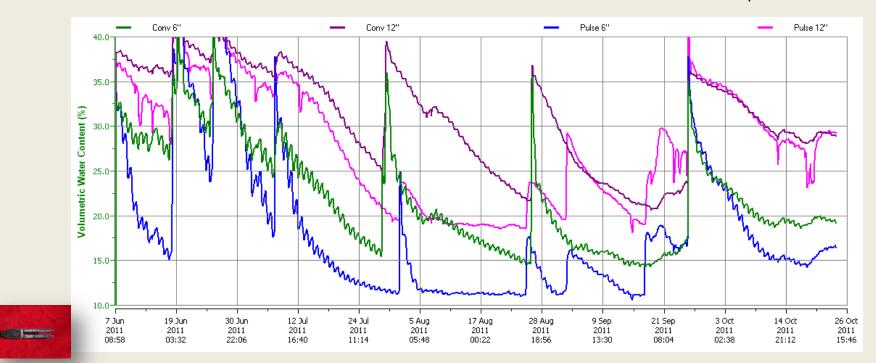
#### Soil Moisture at 6 & 12 Inch Depth for Quasi-Pulse & Manual Irr., 2010 – McCormick Blueberry

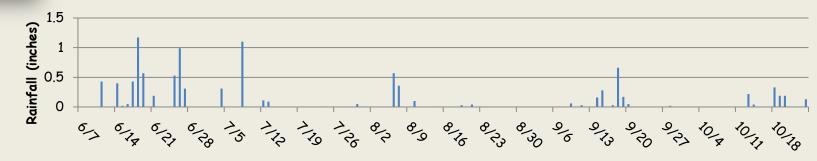


# McCormick Blueberries - 2010 System Operation

Manual



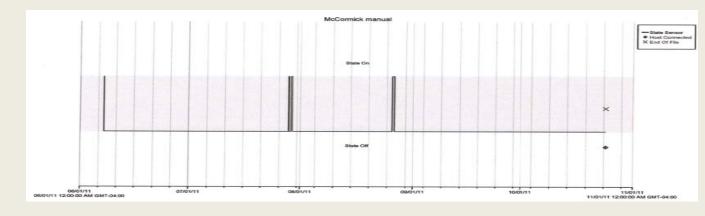




Watermark Sensors

#### Soil Moisture at 6 & 12 Inch Depth for Quasi-Pulse & Manual Irr., 2011 – McCormick Blueberry

Start: 6/7/2011

Stop: 10/24/2011






Total rainfall 10.47" 2011

## McCormick Blueberries - 2011

Manual



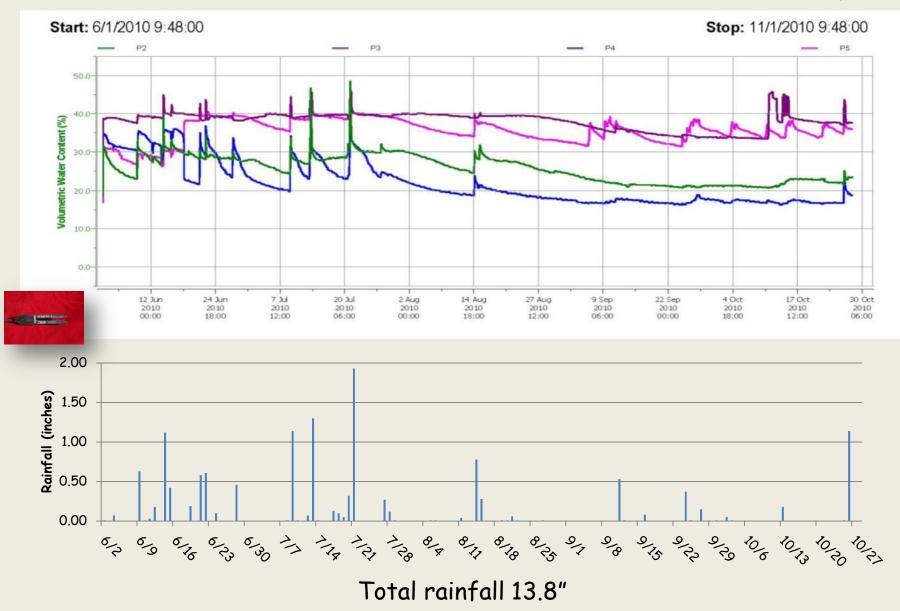
Quasi-Pulse



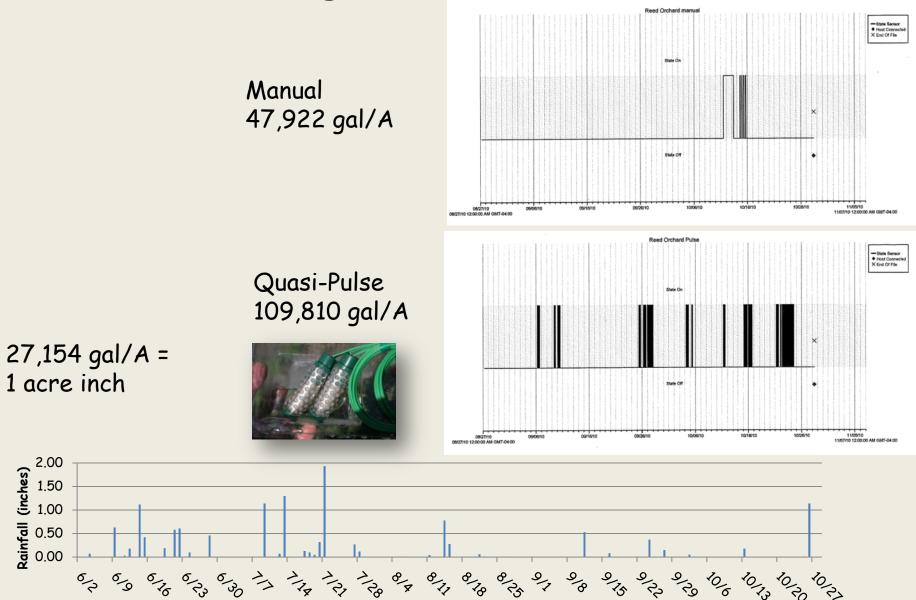
# McCormick - 2010

- 7.10" Rainfall from 6/7-10/16
- 18.7 Acre inches recommended at ("Rule of Thumb") 1" per week for time period
- 12.2 Acre inches total applied Manual
   7.1 + 5.1 = 12.2
- 9.2 Acre inches total applied Quasi-Pulse
   7.1 + 2.1 = 9.2

#### McCormick Water Application (Silt Clay)


| Year | Dates     | Quasi-Pulse<br>(gal/A) | Manual<br>(gal/A) | Quasi-pulse<br>Versus<br>Manual<br>(%) | Quasi-pulse<br>versus<br>1 in/week (%) <sup>1</sup> |
|------|-----------|------------------------|-------------------|----------------------------------------|-----------------------------------------------------|
| 2010 | 6/7-10/16 | 57,467                 | 137,896           | 58.3 less                              | 60.4 less                                           |
| 2011 | 6/7-10/24 | 310,845                | 566,421           | 45.1 less                              | 50.3 more                                           |

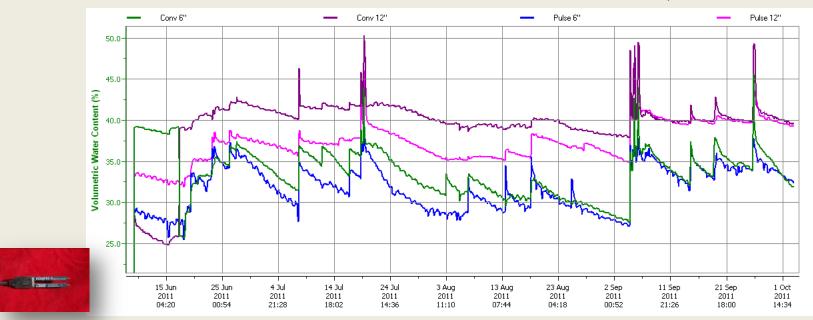
<sup>1</sup>Example calculation 18.7 weeks (6/7-10/16 X 4 ft plant spacing/14 ft row spacing X 27,154 gal/ac-ft. = 145,080 gal/ac. (145,080-57,467)/145,080 X 100 = 60.4%

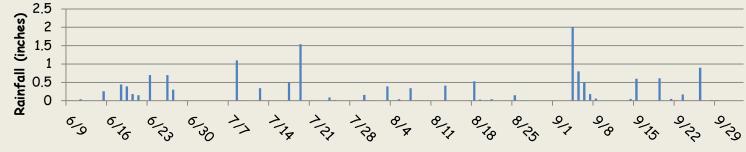

| Time<br>period | Quasi-<br>Pulse<br>(gal/plant) | Manual<br>(gal/plant) | Difference<br>(gal/plant) |
|----------------|--------------------------------|-----------------------|---------------------------|
| 2010           | 73.9                           | 177.3                 | -103.4                    |
| 2011           | 399.6                          | 728.2                 | -328.6                    |

1 acre inch of water =27,154 gal

#### Soil Moisture at 6 & 12 Inch Depth for Quasi-Pulse & Manual Irr., 2010 - Reed Blueberry

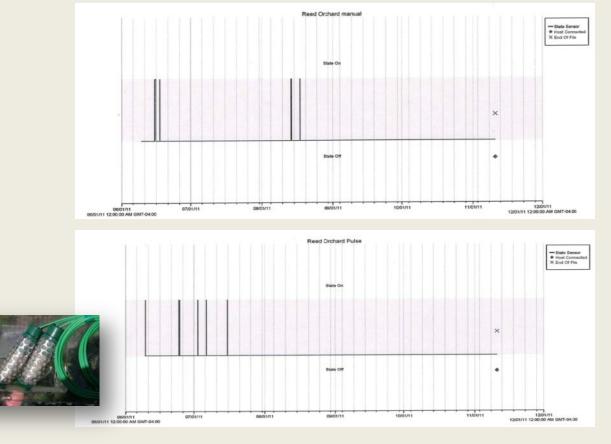


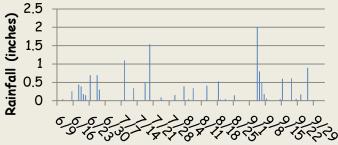

#### Watermark Sensor Irrigation - Reed Aug. 27- Oct. 10, 2010




#### Soil Moisture at 6 & 12 Inch Depth for Quasi-Pulse & Manual Irr., 2011 - Reed Blueberry

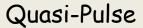
Start: 6/9/2011


Stop 10/3/2011






Total rainfall 14.94" 2011


## Reed Blueberries - 2011



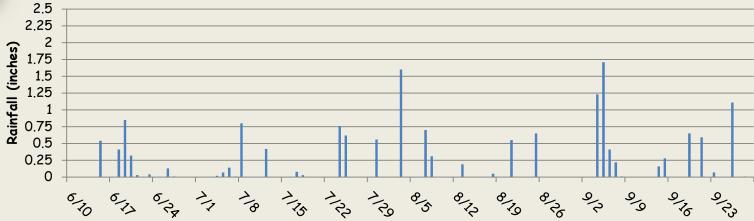


Total rainfall 14.94" 2011

#### Manual

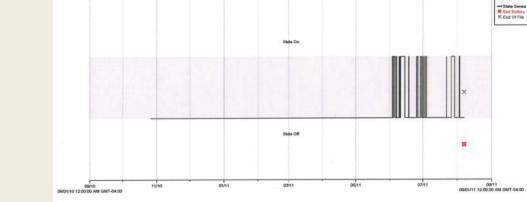


#### Reed Water Application (Silt Clay)


| Year | Dates     | Quasi-Pulse<br>(gal/A) | Manual<br>(gal/A) | Quasi-pulse<br>Versus<br>Manual<br>(%) | Quasi-pulse<br>versus<br>1 in/week (%) |
|------|-----------|------------------------|-------------------|----------------------------------------|----------------------------------------|
| 2010 | 6/2-10/28 | 109,810                | 47,922            | 56.3 more                              | 33.0 less                              |
| 2011 | 6/9-10/3  | 172                    | 140,104           | 99.9 less                              | 99.9 less                              |

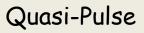
| Time<br>period | Quasi-<br>Pulse<br>(gal/plant) | Manual<br>(gal/plant) | Difference<br>(gal/plant) |
|----------------|--------------------------------|-----------------------|---------------------------|
| 2010           | 141.2                          | 61.6                  | 79.6 more                 |
| 2011           | 0.2                            | 180.1                 | 179.9 less                |

1 acre inch of water = 27,154 gal

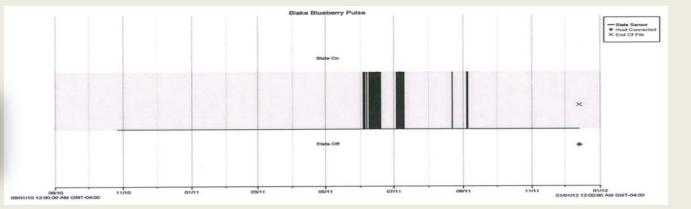

#### Soil Moisture at 6 & 12 Inch Depth for Quasi-Pulse & Manual Irrigation – 2011 Blake Blueberry

Stop: 9/29/2011 Start: 6/10/2011 Conv 6" Conv 12" Pulse 6" Pulse 12" 120 100-Volumetric Water Content (%) 80 60 40 20 9 Aug 28 Aug 6 Sep 15 Jun 24 Jun 3 Jul 13 Jul 22 Jul 31 Jul 19 Aug 15 Sep 25 Sep 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 12:00 00:00 06:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00




The state of the s

## Blake Blueberries - 2011




Blake Blueberry Conventional

Manual







#### Blake Water Application (Maury Silt Loam)

| Year | Dates     | Quasi-Pulse<br>(gal/A) | Manual<br>(gal/A) | Quasi-pulse<br>Versus<br>Manual<br>(%) | Quasi-pulse<br>versus<br>1 in/week (%) |
|------|-----------|------------------------|-------------------|----------------------------------------|----------------------------------------|
| 2010 | 7/7-10/26 | *                      | *                 |                                        |                                        |
| 2011 | 6/3-19/29 | 117,365                | 318,015           | 63.1 less                              | 10.6 less                              |

\*Wiring mistake precluded accurate measurement of water in 2010. It was corrected on August 10, 2010

| Time<br>period | Quasi-<br>Pulse<br>(gal/plant) | Manual<br>(gal/plant) | Difference<br>(gal/plant) |
|----------------|--------------------------------|-----------------------|---------------------------|
| 2010           | *                              | *                     |                           |
| 2011           | 203                            | 549                   | 346.5 less                |

1 acre inch of water =27,154 gal

## Blueberry Shoot Growth - 2010

| Treatment | McCormick<br>'Darrow'<br>(in) | Reed<br>'Spartan'<br>(in) | Blake<br>'Nelson' & 'Jersey'<br>pooled <sup>1</sup><br>(in) |
|-----------|-------------------------------|---------------------------|-------------------------------------------------------------|
| Manual    | 15.9 a                        | 11.9 a                    | 12.8 a                                                      |
| Pulsed    | 14.8 a                        | 11.9 a                    | 12.6 a                                                      |

<sup>1</sup>There was no statistical difference between varieties in shoot growth

## Fruit Yields 2011 & Irrigation - 2010

| Farm/Trt. | Yield<br>(lb/A) | Berry size<br>(oz) | Brix<br>(%) | Irrigation 2010<br>(gal/A) |
|-----------|-----------------|--------------------|-------------|----------------------------|
| McCormick | (9 yr-old)      |                    |             | Soil: Clay Ioam            |
| Pulsed    | 13,624 A        | 1.44 A             | 10.7 A      | 57,467                     |
| Manual    | 13,233 A        | 1.44 A             | 10.3 A      | 137,896                    |
|           |                 |                    |             |                            |
| Reed      | (5 yr-old)      |                    |             | Soil: Clay Ioam            |
| Pulsed    | 2,791 A         | 1.36 A             | 12.9 B      | 109,810                    |
| Manual    | 1,291 B         | 1.31 A             | 14.5 A      | 47,922                     |
|           |                 |                    |             |                            |
| Blake     | (9 yr-old)      |                    |             | Soil: Silt loam            |
| Pulsed    |                 | 1.62 A             | 12.0 A      |                            |
| Manual    |                 | 1.70 A             | 11.9 A      |                            |

Good yield is 6,000 lb/acre

Means within columns followed by the same letter are not significantly different, Waller-Duncan LSD (P≤0.05)

# Summary - Water Applied/A

| Grower             | Year | Quasi-<br>Pulse<br>(Gal/A) | Manual<br>(Gal/A) | Diff.<br>Quasi-<br>Pulse<br>(Gal/A) | Diff.<br>(A in) <sup>1</sup> | Quasi-<br>Pulse<br>Versus<br>Manual | 2011<br>Yield<br>Manual<br>(Ib/A) | 2011<br>Yield<br>Pulsed<br>(lb/A) |
|--------------------|------|----------------------------|-------------------|-------------------------------------|------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|
| McCormick          | 2010 | 57,467                     | 137,896           | -80,429                             | -2.96                        | 58.3% less                          | 13,233 a                          | 13,624 a                          |
|                    | 2011 | 310,845                    | 566,421           | -255,576                            | -9.41                        | 45.1% less                          |                                   |                                   |
| Reed               | 2010 | 109,810                    | 47,922            | +61,888                             | +2.28                        | 56.3% more                          | 1,291 b                           | 2,791 a                           |
|                    | 2011 | 172                        | 140,103           | -137,731                            | -5.15                        | 99.9% less                          |                                   |                                   |
| Blake <sup>2</sup> | 2010 |                            |                   |                                     |                              |                                     |                                   |                                   |
|                    | 2011 | 117,365                    | 318,015           | -200,650                            | -7.35                        | 63.1% less                          |                                   |                                   |

 $^{1}27,154$  gal/A = 1 acre inch

<sup>2</sup>Manual and quasi-pulse irrigation wires hooked up backwards at season start, corrected 8/10/10

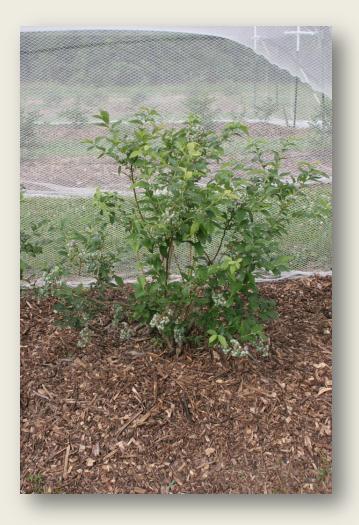
Generally saved water with Quasi Pulsed

# Economics

|        | Quasi-pulse<br>Water Cost<br>Savings <sup>1</sup><br>(ac) | Fruit Yield<br>Increase<br>(lb/ac) | Additional<br>Fruit<br>Revenue <sup>2</sup><br>(ac) | Cost<br>Adjustment<br>for 2010<br>Water<br>Use | Additional<br>Profit<br>Adjusted for<br>Quasi-pulse<br>System Cost<br>(\$740.00/ac) |
|--------|-----------------------------------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|
| McCorr | nick                                                      |                                    |                                                     |                                                |                                                                                     |
| 2010   | \$240                                                     |                                    |                                                     |                                                |                                                                                     |
| 2011   | \$770                                                     | 391                                | \$1,670                                             | \$1,910                                        | \$1,170                                                                             |
| Reed   |                                                           |                                    |                                                     |                                                |                                                                                     |
| 2010   | \$-185                                                    |                                    |                                                     |                                                |                                                                                     |
| 2011   | \$420                                                     | 1,500                              | \$6,405                                             | \$6,220                                        | \$5,480                                                                             |
| Blake  |                                                           |                                    |                                                     |                                                |                                                                                     |
| 2010   | *                                                         |                                    |                                                     |                                                |                                                                                     |
| 2011   | \$587                                                     |                                    | - \$1,102                                           | ?                                              | ?                                                                                   |

<sup>1</sup>Water cost \$3.00/1,000 gal

<sup>2</sup>2011 FSA KY average blueberry retail price \$4.27/lb


# Conclusions – McCormick Farm

- No significant difference in fruit yield, size or sugar content between the two systems
- Quasi-pulse system water usage was 58.3% and 45.1% less than the manual system in 2010 and 2011 respectively.



# Conclusions - Reed Farm

- Fruit yield was 1,500 lb greater for the Quasipulse system in 2011
- No difference in berry size, however fruit sugar content was higher in the manually irrigated plants
- Quasi-pulse system water usage was 56.1% more and 99.9% less than the manual system in 2010 and 2011 respectively.



# Conclusions - Blake Farm

- No significant difference in fruit yield between the two systems in 2011, there were wiring problems in 2010
- No difference in berry size or sugar content between treatments.
- Quasi-pulse system water usage was 63.1% less than the manual system in 2011 producing a \$587 irrigation savings



## Conclusions

 No significant difference in annual terminal shoot growth between the two systems



# Conclusions

- The Watermark sensor system works
- The system is rugged and easier and less expensive to use than tensiometers
- Used extensively out west with manual valve operation
- Provides irrigation at critical times
- Can save water depending on how a grower irrigates

- Must be used on blocks with plants of the same age or size
- There is a learning curve for growers



# Conclusions/Plans

- Determining the exact centa bars to begin irrigation still needs some work.
- Amount of water needed depends on
  - Season
  - Soil type & structure
  - Mulched vs unmulched
  - Plant size
  - Rooting depth
  - Crop load

- Future plans
  - Use system with <sup>1</sup>/<sub>2</sub>
     gal./hr rather than 1
     gal./hr emitters
    - Current system puts out almost 3 gal per pulse period
  - Reduce pulse period.
  - Look into better equipment to read Watermark sensor soil moisture levels.



# Learning Experience

- Can't walk away and allow this system to operate automatically
  - Moles
  - Decagon sensor failures
  - Water pressure
    - Too high
    - Too low
  - Leeks





