On-Farm Cold Storage Planning, Design, Management

Scott Sanford
Sr. Outreach Specialist
Rural Energy Program
Biological Systems Engineering
UW-Madison
Agenda

- Types of Storage Facilities
- Refrigeration Systems
- Environmental Conditions
- Material Handling
- Planning
- Economics
- Storage Grants
Crop Storage Parameters

- Type of Storage
 - Crop Volumes
 - Bulk Storage
 - Containers

- Length of Storage
 - Short – up to 60 days
 - Long – 3-12 months

- Crop Compatibility
 - Temperature
 - Humidity
 - Ethylene
 - Odor

- Investment
Type of storage facilities

- Root cellars
- Refrigerators
- Walk-in coolers
- Drive-in coolers

Source: http://energysmartideas.com/blog/category/root-cellars/

Source: http://www.tyloon.com/images/content/business/gallery/37.jpg

Source: http://www.manchesterwholesale.com/cooler.htm
Root Cellar 1843

- Typical inside temperature within a few degrees of ground temperature
- No temperature or humidity control
- Often labor intensive to move crops in and out

Source: http://www.stonestructures.org/html/root_cellars.html#Putnam
Root Cellars

- Use ground temperature & outside air for cooling
- Temperature subject to ambient temp
- Vent warm air / respiration gases
- Little/no electrical energy use (fans)
- Not suitable for removing harvest heat
- Access for material handling??
 - Can’t afford to hand carry crops in and out
- Drainage very important

Source: http://www.kk.org/streetuse/redneck_root_cellar.jpg
Root Cellar Plans

- Fruit and Vegetable Storage plans – North Dakota, 1933 – 22 ft x 38 ft

Best for:
- Potatoes
- Short term root crop storage
Modern Root Cellar Concept

- Earth Contact basement
 - Average ground temperature – 49°F
- Office/living 2nd Floor
 - Why not under-ground?
- Fork Truck Accessible
- $36,000 (2001)
Modern Root Cellar Concept

- **Outside air cooling**
 - Outside air used when
 - Cooling is needed &
 - Outside air colder than inside temperature
 - Computer controlled
 - Fans and Dampers
 - Mixing Fans & heaters

More information at http://smfarm.cfans.umn.edu/rootcellar.htm
Refrigerators

- Self contained
- Great for smaller quantities
- No humidity control
- No planned air exchange
- Space efficiency?
 - Do containers fit shelving?
- Solid doors more energy efficient than glass
- Limited capacity to remove field heat
- Cost effective for small grower / short term

Source: http://www.selectappliance.com/exec/ce-product/tl_g20000
Walk-in / Drive-in Coolers Features

- Polyurethane insulated panels
- Insulated floor
- Cleanable material
- Lockable door latch
- Thermometer & light switch
- Refrigeration system
- Electric Vaporizer evaporates condensed water
- Environmental Controller
- Self closing door with gasket

Source: http://www.webstaurantstore.com/nor-lake-walk-in-cooler-6-x-12-x-6-7-indoor/596KLB612.html
Walk-in / Drive-in Coolers

- Manufactured panels
 - Modular tongue/groove panels
 - Walls and Roof

- Insulation
 - Closed Cell Foam
 - 4” minimum (R-25) – 6” better (R-38)
 - Vapor barriers

- Installation
 - Easy to assemble
 - Locking cams

- Refrigeration system size
 - Field heat & cooler heat loss
 - Summer or Fall/winter use

Built-in-place Cooler

- Insulated walls – R-25 minimum (EPACT 2005)
 - Fiberglass insulation **NOT** recommended
 - Wet insulation reduces insulation value
 - Foam - Polyurethane / Polystyrene
 - R-value - 4 to 6.5 per inch
- Vapor barrier – warm side
 - Year round storage – warm side changes
- Insulated floor
 - 1-2” foam board under concrete – 25 or 40 PSI rating
- Washable interior surface
 - Fiberglass / plastic / steel
- Drain – condensation / clean-up
- Cost - ~ same as used cooler panels (labor & floor excluded)
 - 12 x 12 x 8 – $5500 w/ refrigeration
Cooler Envelop

- 1-2" foam insulation
- Washable interior surface
- 5"+ foam insulation R-25 min.
- 1-2" foam insulation
- Floor Drain
- 2 x 6 or 2 x 8 walls
- Condenser
- Evaporator
- Rubber roof membrane (if outside)
- 1/2" plywood Exterior
- Thermal Break 1-2" foam insulation

Refer to span table for ceiling joist size
Insulation Materials

- Foam – (4” minimum – 6” better)
 - Types
 - Urethane (yellow)
 - Expanded Polystyrene (pink/blue)
 - Insulation value – R-4 to R-6.5 (5)
 - Foam in place – seals all edges
 - Rigid Board
 - Tongue & groove – tape all seams
 - Double layer with offset seams
 - Cover to protect
 - Steel / plastic corrugated sheeting
 - Fiberglass board
 - Flammable – protect from heat sources
 - No vapor barrier needed

<table>
<thead>
<tr>
<th>Foam Thickness</th>
<th>R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>75</td>
</tr>
</tbody>
</table>
Ceiling Joist Spacing

- Assumptions
 - 50 psf combined live and dead load
 - 24 inch spacing
 - Lumber grade #2 or better SPF

<table>
<thead>
<tr>
<th>Span</th>
<th>Width (ft)</th>
<th>Joist Size (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>2 x 6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2 x 8</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2 x 10</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>2 x 10</td>
</tr>
</tbody>
</table>
Vapor Barriers

- Located on warm side of wall
- Warm side changes summer to winter

Figure 4. Vapor Barrier Location and Methods of Ventilating Attics

Source: Refrigeration and Controlled Atmosphere Storage for Horticultural Crops – NRAES-22
Self-contained units

- Truck/Trailer Reefer
- Higher Heat losses/gain
 - 2.25” to 3” foam
- Smaller refrigeration system
 - Designed to maintain the temperature of product
- Air flow may not be ideal -

Source: http://www.portablecoldstorage.com/
Controlled Atmosphere Storage (CA)

- Suppresses metabolic activity (ripening)
- Gas tight room
- Modify gases in air (78% N₂, 21% O₂ & 0.03% CO₂)
 - Low Oxygen (< 8%)
 - Elevated Carbon Dioxide (>1%)
 - Reduced temperatures
- Commercial use – Crops
 - Apples & pears
 - Cabbage
 - Nuts, kiwifruit, persimmon, pomegranate
 - Used during long distance transportation
 - Asparagus, broccoli, cane berries, figs, lettuce, muskmelons, strawberry, sweet corn, fresh cut fruits
Refrigeration System
– Direct Expansion

Figure 5. Schematic Representation of Direct Expansion Refrigeration System

Source: Refrigeration and Controlled Atmosphere Storage for Horticultural Crops – NRAES-22
Refrigeration Sizing

- Field heat removal
- Heat of respiration
- Conduction heat gain / loss
- Convection heat gain / loss
 - Infiltration
 - Air exchange (opening of door)
- Equipment heat gain
 - Lights, fans, fork truck
Refrigeration Sizing

- Field heat removal
 - Typically largest heat load
 - Cooler loading rate (lbs of product / hour)
 - Removal Rate limited by:
 - crop surface area
 - Product Thermal properties
 - (Specific Heat – Btu/lb-F)
 - Air/water temperature
 - Using a precoolor reduces cooling needs

- Heat load calculation
 - $Q_1 = \text{Field heat removal rate, Btu/24 hrs}$
 - $M = \text{mass of product cooled per 24 hrs, lbs}$
 - $C = \text{Specific heat of product, Btu/lb°F}$
 - $\Delta T = \text{Temperature drop of product in 24 hrs, °F}$

$$Q_1 = MCD\Delta T$$
Refrigeration Requirement

- Field heat removal
 - Largest component
 - Short duration
 - Smaller for fall harvested crops

Source: Refrigeration and Controlled Atmosphere Storage for Horticultural Crops – NRAES-22

Figure 8. Refrigeration Capacity Needed to Cool and Maintain 15,000 Bushels of Apples
Factors affecting field heat removal

- Type of packaging / container
 - Solid sides/bottom versus slotted
- Low Refrigeration Capacity
- Air flow rate

- Reduction in quality if field heat is not removed rapidly enough.
 - Wilting
 - Ripening
 - Spoilage
 - Shortened self-life
Pre-Coolers for field heat removal

- Hydro –
 - Water bath or shower
 - Disease / pathogen transmission

Source: USDA Agricultural Handbook Number 66, 2004
Pre-Coolers for field heat removal

- Dedicated Cooling Room – too slow
 - Plenum wall
- Forced air cooling

Source: USDA Agricultural Handbook Number 66, 2004
Precooling Produce – Gast & Flores, MF-1002, Kansas State U, 1991
Air Precooling
Pre-coolers for field heat removal

- Ice pack
- Vacuum cooling –
 - causes rapid evaporation of water

Reference: Li, Changying, Precooling Fruits and Vegetables in Georgia, C-1004, 12 pgs, University of Georgia Extension, 2011

Source: USDA Agricultural Handbook Number 66, 2004
Refrigeration Sizing

- **Heat of Respiration**
 - Varies with crop and temperature
 - Higher storage temperature increases respiration

\[Q_2 = MK \]

- **Equation**
 - \(Q_2 \) = respiration heat load, Btu/24 hrs
 - \(M \) = Mass of product cooled per 24 hrs, tons
 - \(K \) = rate of respiration heat production, Btu/24 hours-ton
 - Affected by storage temperature
Heat of respiration table

Table 6. Heat of Respiration and Specific Heat of Fresh Fruits and Vegetables When Stored at Various Temperatures

<table>
<thead>
<tr>
<th>Commodity</th>
<th>32°F</th>
<th>40°F</th>
<th>60°F</th>
<th>70°F</th>
<th>80°F</th>
<th>Specific Heat Btu / 10°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples, summer</td>
<td>660-1,320</td>
<td>1,100-2,420</td>
<td>3,960-6,620</td>
<td>4,400-9,020</td>
<td>—</td>
<td>.87</td>
</tr>
<tr>
<td>Apples, fall</td>
<td>440-880</td>
<td>1,100-1,540</td>
<td>1,980-4,400</td>
<td>3,300-5,500</td>
<td>—</td>
<td>.97</td>
</tr>
<tr>
<td>Apricots</td>
<td>1,100-1,320</td>
<td>1,320-1,980</td>
<td>4,620-7,480</td>
<td>6,360-11,440</td>
<td>—</td>
<td>.88</td>
</tr>
<tr>
<td>Artichokes, globe</td>
<td>3,360-9,900</td>
<td>5,720-13,320</td>
<td>16,720-31,900</td>
<td>29,700-51,260</td>
<td>31,900-66,000</td>
<td>.87</td>
</tr>
<tr>
<td>Asparagus</td>
<td>5,940-17,620</td>
<td>12,100-29,920</td>
<td>35,200-71,940</td>
<td>60,500-110,000</td>
<td>110,000-132,000</td>
<td>.94</td>
</tr>
<tr>
<td>Avocados</td>
<td>—</td>
<td>4,400-6,800</td>
<td>13,640-34,540</td>
<td>16,280-76,340</td>
<td>25,980-64,160</td>
<td>.81</td>
</tr>
<tr>
<td>Bananas, green</td>
<td>—</td>
<td>—</td>
<td>4,620-5,060</td>
<td>7,260-7,700</td>
<td>—</td>
<td>.81</td>
</tr>
<tr>
<td>Bananas, ripening</td>
<td>—</td>
<td>—</td>
<td>5,500-16,500</td>
<td>7,260-31,240</td>
<td>11,000-53,900</td>
<td>—</td>
</tr>
<tr>
<td>Beans, lima</td>
<td>2,200-6,800</td>
<td>4,400-7,920</td>
<td>22,000-27,500</td>
<td>28,260-39,380</td>
<td>—</td>
<td>.73</td>
</tr>
<tr>
<td>Beans, snap</td>
<td>4,400</td>
<td>7,700</td>
<td>20,480</td>
<td>26,600</td>
<td>42,480</td>
<td>.91</td>
</tr>
<tr>
<td>Bean sprouts</td>
<td>4,820-6,500</td>
<td>9,240</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.91</td>
</tr>
<tr>
<td>Beets, topped</td>
<td>1,100-1,540</td>
<td>1,980-2,200</td>
<td>3,740-5,060</td>
<td>—</td>
<td>—</td>
<td>.90</td>
</tr>
<tr>
<td>Beets, with leaves</td>
<td>2,420</td>
<td>3,080</td>
<td>5,500</td>
<td>6,800</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Berries:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackberries</td>
<td>3,960-4,400</td>
<td>6,620-9,020</td>
<td>16,500</td>
<td>34,100</td>
<td>—</td>
<td>.88</td>
</tr>
<tr>
<td>Blueberries</td>
<td>440-2,200</td>
<td>1,980-2,840</td>
<td>7,480-13,840</td>
<td>11,440-19,140</td>
<td>17,160-27,280</td>
<td>.86</td>
</tr>
<tr>
<td>Cranberries</td>
<td>—</td>
<td>860-1,100</td>
<td>—</td>
<td>2,420-3,960</td>
<td>—</td>
<td>.90</td>
</tr>
<tr>
<td>Gooseberries</td>
<td>1,100-1,540</td>
<td>1,780-3,520</td>
<td>5,940-15,180</td>
<td>9,020-23,100</td>
<td>—</td>
<td>.91</td>
</tr>
<tr>
<td>Raspberries</td>
<td>3,960-5,500</td>
<td>6,820-8,580</td>
<td>18,040-22,220</td>
<td>—</td>
<td>—</td>
<td>.86</td>
</tr>
<tr>
<td>Strawberries</td>
<td>2,840-2,960</td>
<td>3,520-5,060</td>
<td>15,520-20,240</td>
<td>22,440-43,120</td>
<td>37,180-46,420</td>
<td>.92</td>
</tr>
<tr>
<td>Broccoli</td>
<td>4,180-4,620</td>
<td>7,040-8,140</td>
<td>35,420-40,920</td>
<td>61,180-70,400</td>
<td>—</td>
<td>.92</td>
</tr>
<tr>
<td>Brussels sprouts</td>
<td>2,200-6,600</td>
<td>4,840-10,560</td>
<td>14,092-29,920</td>
<td>18,920-41,800</td>
<td>—</td>
<td>.86</td>
</tr>
<tr>
<td>Cabbage</td>
<td>880-1,320</td>
<td>1,980-2,840</td>
<td>4,400-7,040</td>
<td>6,160-10,780</td>
<td>10,780-13,860</td>
<td>.94</td>
</tr>
<tr>
<td>Carrots, topped</td>
<td>2,200-4,400</td>
<td>2,680-5,720</td>
<td>5,720-11,880</td>
<td>10,120-20,900</td>
<td>—</td>
<td>.91</td>
</tr>
<tr>
<td>Carrots, bunched</td>
<td>3,960-7,700</td>
<td>5,500-11,220</td>
<td>12,100-23,320</td>
<td>19,140-26,620</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>3,520-4,180</td>
<td>4,180-4,840</td>
<td>9,460-10,780</td>
<td>16,500-18,920</td>
<td>18,480-30,300</td>
<td>.93</td>
</tr>
</tbody>
</table>

Source: Refrigeration and Controlled Atmosphere Storage for Horticultural Crops – NRAES-22
Refrigeration Sizing

- Conductive Heat Gain
 - Temperature difference across cooler walls, ceiling, floors
 - Insulation value of walls, ceiling, floors
 - Total surface area

\[Q_3 = 24 \frac{A(T_o - T_i)}{R} \]

- Heat Gain (loss) Equation
 - \(Q_3 \) = conductive heat gain (loss), Btu/24 hrs
 - \(A \) = area of floor, wall or ceiling, ft\(^2\)
 - \(T_o \) = Outside temperature, °F
 - \(T_i \) = Inside temperature, °F
 - \(R \) = R-value of respective component (hr ft\(^2\) °F)/Btu
 - Each component (wall, ceiling, floor) is calculated separately then added together
Refrigeration Sizing

- Convection Heat Gain
 - Heat gain (loss) from outside entering cold storage environment
 - Opening of door / planned venting

\[Q_4 = (h_o - h_i)V \frac{N}{13.5} \]

- Heat Gain Equation
 - \(Q_4 \) = Convective heat gain, Btu / 24 hr
 - \(H_o \) = enthalpy (heat content) of outside air, Btu/lb.
 - \(H_i \) = enthalpy (heat content) of inside air, Btu/lb.
 - \(V \) = volume of empty cold storage, cubic feet
 - \(N \) = number of air changes per 24 hrs
 - 13.5 – an average value for the specific volume of outside air, cu ft / lb.
Average Air Changes Per 24 HR. For Storage Rooms Due to Door Openings and Infiltration

<table>
<thead>
<tr>
<th>Volume cu. ft.</th>
<th>Air Changes per 24 hr.</th>
<th>Volume cu. ft.</th>
<th>Air Changes per 24 hr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Above 32 F</td>
<td>Below 32 F</td>
<td>Above 32 F</td>
</tr>
<tr>
<td>200</td>
<td>44.0</td>
<td>33.5</td>
<td>6,000</td>
</tr>
<tr>
<td>300</td>
<td>34.5</td>
<td>26.2</td>
<td>8,000</td>
</tr>
<tr>
<td>400</td>
<td>29.5</td>
<td>22.5</td>
<td>10,000</td>
</tr>
<tr>
<td>500</td>
<td>26.0</td>
<td>20.0</td>
<td>15,000</td>
</tr>
<tr>
<td>600</td>
<td>23.0</td>
<td>18.0</td>
<td>20,000</td>
</tr>
<tr>
<td>800</td>
<td>20.0</td>
<td>15.3</td>
<td>25,000</td>
</tr>
<tr>
<td>1,000</td>
<td>17.5</td>
<td>13.5</td>
<td>30,000</td>
</tr>
<tr>
<td>1,500</td>
<td>14.0</td>
<td>11.0</td>
<td>40,000</td>
</tr>
<tr>
<td>2,000</td>
<td>12.0</td>
<td>9.3</td>
<td>50,000</td>
</tr>
<tr>
<td>3,000</td>
<td>9.5</td>
<td>7.4</td>
<td>75,000</td>
</tr>
<tr>
<td>4,000</td>
<td>8.2</td>
<td>6.3</td>
<td>100,000</td>
</tr>
<tr>
<td>5,000</td>
<td>7.2</td>
<td>5.6</td>
<td></td>
</tr>
</tbody>
</table>

Note: For heavy usage multiply the above values by 2.

Source: http://www.industrialcontrolsonline.com/training/online/refrigeration-load-sizing-walk-coolers-freezers-other-boxes
Refrigeration Sizing

- In-cooler Equipment Heat Load
 - Lights, Motors
 - Heaters / Defroster
 - Fork truck
 - People

\[Q_5 = (kW \times 3430) \times tl + (Hp \times 2545) \times tm \]

- Equation heat gain
 - \(Q_5 \) = heat produced by equipment, Btu/24 hrs
 - kWh = kilowatt total for electric lights
 - Hp = horsepower total for motors
 - tl, tm = total hours of operation per day for lights and motors, respectively.
Refrigeration Sizing

- Total refrigeration requirement
 - Use maximum (worth case) values for each
 \[Q_t = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 \]

- Capacity of refrigeration system
 \[\text{Capacity} = Q_t \times SF \times DF / (16 \text{ to } 24 \text{ hrs}) \]
 - SF = service factor, typically 1.1 to 1.2
 - DF = defrost factor, typically 1.1 to 1.2
 - One ton of Refrigeration = cooling based on melting 2000 lbs of ice in 24 hrs
 - 288,000 Btu/24 hrs or 12,000 Btu/hr
Compressor Capacity Recommendation for Small Coolers

<table>
<thead>
<tr>
<th>Dimensions (feet)</th>
<th>Volume (cubic feet)</th>
<th>Cooling Load (Btu/hr)</th>
<th>Compressor Size (Hp²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6x6x9</td>
<td>324</td>
<td>2,800</td>
<td>0.50</td>
</tr>
<tr>
<td>6x12x9</td>
<td>648</td>
<td>4,500</td>
<td>0.75</td>
</tr>
<tr>
<td>8x8x9</td>
<td>576</td>
<td>4,100</td>
<td>0.75</td>
</tr>
<tr>
<td>8x12x9</td>
<td>864</td>
<td>5,500</td>
<td>0.75</td>
</tr>
<tr>
<td>8x16x9</td>
<td>1152</td>
<td>7,100</td>
<td>1.00</td>
</tr>
<tr>
<td>10x10x9</td>
<td>900</td>
<td>5,600</td>
<td>0.75</td>
</tr>
<tr>
<td>10x15x9</td>
<td>1350</td>
<td>7,900</td>
<td>1.50</td>
</tr>
<tr>
<td>12x12x9</td>
<td>1296</td>
<td>7,700</td>
<td>1.00</td>
</tr>
<tr>
<td>12x20x9</td>
<td>2160</td>
<td>9,800</td>
<td>1.50</td>
</tr>
<tr>
<td>20x20x9</td>
<td>3600</td>
<td>15,800</td>
<td>3.00</td>
</tr>
</tbody>
</table>

¹Based on Prefabricated cooler data with R-30 box insulation, 35°F inside and 90°F outside temperature.
²Nearest fractional horsepower matched to cooling load times a service factor of 1.5.

Source: Refrigeration and Controlled Atmosphere Storage for Horticultural Crops – NRAES-22
Small Refrigeration Systems

- CoolBot™ Controller
 - Over-rides standard window air conditioner controls
 - Cooling capacity less than rating at lower temps
 - Maybe lower capacity than require for field heat removal
 - Multiply units may be needed

- All-in One Refrigeration units
 - Plug and Play – no Refrigeration tech needed
 - Higher / known capacity
 - Circulating fan
 - Roof top or side-mount / inside or outside
 - Warranty
Refrigeration System

- **Compressors**
 - Reciprocating compressors – older technology
 - Scroll Compressors
 - 15-20% higher efficiency
 - Cost about the same
 - Energy Efficiency Grants available??

- **Maintenance**
 - Clean Condenser units – 1 to 2X per year
 - Degreaser and rinse
 - Annual Service
 - Check refrigerant level
 - Check for leaks, operation of fans, thermostatic control
Environmental Controls

- Temperature
- Humidification
- Respiration gases
- Fresh air / outside air
- Internal Air circulation
- Refrigeration
 - Defrost

Source: http://www.bartinst.com/GREENHOUSE/ghk12x2c.html
Temperature Ranges for crops

- **Cold & Wet**
 - Beets, cabbage, carrots, turnips, parsnips
 - 32F & RH 95%+

- **Cold & Dry**
 - Onions / Garlic - 32F & RH 65-70%

- **Cool & Wet**
 - Potatoes - 40-50F & RH 95%

- **Warm & Dry**
 - Winter Squash - 50-55F & RH 50-70%
 - Sweet Potatoes - 55-60F & RH 80-85%
Table 1. Fruits & Vegetables that require cold, moist conditions

<table>
<thead>
<tr>
<th>Vegetable</th>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
<th>Length of Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asparagus</td>
<td>32-36</td>
<td>95</td>
<td>2-3 weeks</td>
</tr>
<tr>
<td>Apples</td>
<td>32</td>
<td>95</td>
<td>2-6 months</td>
</tr>
<tr>
<td>Beets</td>
<td>32</td>
<td>95</td>
<td>3-5 months</td>
</tr>
<tr>
<td>Broccoli</td>
<td>32</td>
<td>95</td>
<td>10-14 days</td>
</tr>
<tr>
<td>Brussels Sprouts</td>
<td>32</td>
<td>95</td>
<td>4-6 weeks</td>
</tr>
<tr>
<td>Cabbage, Early</td>
<td>32</td>
<td>95</td>
<td>1-2 months</td>
</tr>
<tr>
<td>Cabbage, Late</td>
<td>32</td>
<td>95</td>
<td>3-4 months</td>
</tr>
<tr>
<td>Cabbage, Chinese</td>
<td>32</td>
<td>95</td>
<td>3-6 weeks</td>
</tr>
<tr>
<td>Carrots, mature</td>
<td>32</td>
<td>95</td>
<td>4-5 months</td>
</tr>
<tr>
<td>Carrots, immature</td>
<td>32</td>
<td>95</td>
<td>4-6 weeks</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>32</td>
<td>95</td>
<td>2-4 weeks</td>
</tr>
<tr>
<td>Celeriac</td>
<td>32</td>
<td>95</td>
<td>3-4 months</td>
</tr>
<tr>
<td>Celery</td>
<td>32</td>
<td>95</td>
<td>2-3 months</td>
</tr>
<tr>
<td>Collards</td>
<td>32</td>
<td>95</td>
<td>4-5 weeks</td>
</tr>
<tr>
<td>Corn, sweet</td>
<td>32</td>
<td>95</td>
<td>2-6 days</td>
</tr>
<tr>
<td>Endive, Escarole</td>
<td>32</td>
<td>95</td>
<td>6-8 days</td>
</tr>
<tr>
<td>Grapes</td>
<td>32</td>
<td>95</td>
<td>2-3 weeks</td>
</tr>
<tr>
<td>Kale</td>
<td>32</td>
<td>95</td>
<td>1-2 months</td>
</tr>
<tr>
<td>Leeks, green</td>
<td>32</td>
<td>95</td>
<td>2-3 weeks</td>
</tr>
<tr>
<td>Lettuce</td>
<td>32</td>
<td>95</td>
<td>2-3 weeks</td>
</tr>
<tr>
<td>Parsley</td>
<td>32</td>
<td>95</td>
<td>2-6 months</td>
</tr>
<tr>
<td>Parsnips</td>
<td>32</td>
<td>95</td>
<td>2-6 months</td>
</tr>
<tr>
<td>Pears</td>
<td>32</td>
<td>95</td>
<td>2-7 months</td>
</tr>
<tr>
<td>Peas, green</td>
<td>32</td>
<td>95</td>
<td>1-3 weeks</td>
</tr>
<tr>
<td>Potatoes, early</td>
<td>50</td>
<td>90</td>
<td>3-4 months</td>
</tr>
<tr>
<td>Potatoes, late</td>
<td>39</td>
<td>90</td>
<td>4-9 months</td>
</tr>
<tr>
<td>Radishes, spring</td>
<td>32</td>
<td>95</td>
<td>1-2 weeks</td>
</tr>
<tr>
<td>Radishes, winter</td>
<td>32</td>
<td>95</td>
<td>2-4 months</td>
</tr>
<tr>
<td>Rhubarb</td>
<td>32</td>
<td>95</td>
<td>2-4 weeks</td>
</tr>
<tr>
<td>Rutabagas</td>
<td>32</td>
<td>95</td>
<td>2-4 months</td>
</tr>
<tr>
<td>Spinach</td>
<td>32</td>
<td>95</td>
<td>1-2 weeks</td>
</tr>
</tbody>
</table>

Table 2. Vegetables that require cool, moist conditions

<table>
<thead>
<tr>
<th>Vegetable</th>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
<th>Length of Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beans, snap</td>
<td>40-50</td>
<td>95</td>
<td>7-10 days</td>
</tr>
<tr>
<td>Cucumbers</td>
<td>45-50</td>
<td>95</td>
<td>10-14 days</td>
</tr>
<tr>
<td>Eggplant</td>
<td>45-50</td>
<td>90</td>
<td>1 week</td>
</tr>
<tr>
<td>Carrots, ripe</td>
<td>40</td>
<td>90</td>
<td>15 days</td>
</tr>
<tr>
<td>Watermelon</td>
<td>40-50</td>
<td>80-95</td>
<td>2-3 weeks</td>
</tr>
<tr>
<td>Peppers, sweet</td>
<td>45-50</td>
<td>95</td>
<td>2-3 weeks</td>
</tr>
<tr>
<td>Potatoes, early</td>
<td>50</td>
<td>90</td>
<td>1-3 weeks</td>
</tr>
<tr>
<td>Potatoes, late</td>
<td>40</td>
<td>90</td>
<td>4-9 months</td>
</tr>
<tr>
<td>Tomatoes, green</td>
<td>50-70</td>
<td>90</td>
<td>1-3 weeks</td>
</tr>
<tr>
<td>Tomatoes, ripe</td>
<td>45-50</td>
<td>90</td>
<td>4-7 days</td>
</tr>
</tbody>
</table>

Table 3. Vegetables that require cool dry conditions

<table>
<thead>
<tr>
<th>Vegetable</th>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
<th>Length of Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic</td>
<td>32</td>
<td>65-70</td>
<td>6-7 months</td>
</tr>
<tr>
<td>Onions</td>
<td>32</td>
<td>65-70</td>
<td>6-7 months</td>
</tr>
</tbody>
</table>

Table 4. Vegetables that require warm dry conditions

<table>
<thead>
<tr>
<th>Vegetable</th>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
<th>Length of Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peppers, hot</td>
<td>50</td>
<td>60-70</td>
<td>6 months</td>
</tr>
<tr>
<td>Pumpkins</td>
<td>50-55</td>
<td>70-75</td>
<td>2-3 months</td>
</tr>
<tr>
<td>Squash, winter</td>
<td>50-55</td>
<td>50-60</td>
<td>2-6 months</td>
</tr>
<tr>
<td>Sweet Potato</td>
<td>55-60</td>
<td>80-85</td>
<td>4-6 months</td>
</tr>
<tr>
<td>Products</td>
<td>Effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apples or Pears with</td>
<td>Ethylene from apples and pears damages or causes off flavors in vegetables. Potatoes cause "earthy" flavor in fruit. Potatoes are injured by cold temperatures. High humidity causes root growth in onions. Ethylene causes bitterness in carrots.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celery with Onions or Carrots</td>
<td>Odor transfer occurs between products.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat Eggs Dairy with</td>
<td>Fruit flavors are taken up by the meat, eggs, and dairy products.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leafy Greens and Flowers with</td>
<td>Ethylene produced by the fruit crops damages greens and flowers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucumbers Peppers and Green Squash with</td>
<td>Ethylene from tomatoes, apples, and pears causes loss of green color. This is aggravated by storage temperatures of 45-50°F which are too warm for apples and pears.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modified from Hardenburg et. al. (1986).
Humidity control

- Add moisture to air to reduce crop moisture loss
- Evaporative cooler pad
- Atomizer
- Misting
 - No water on crops
- Pack in Plastic bag
- Pack crops in damp sand or sawdust

Source: http://ivi-air.com/
Humidistat

- Accuracy range
 - Range to 99%
 - Accuracy - 3-4% or less
 - Resolution – 1% or less
 - Smallest display digit
 - Accuracy decreases >90%

- Remote sensor desirable
 - Locate in air flow

- Enclosure designed for wet environment

- Cost $130 - $500
Centrifugal Humidifier

- Utilities: Electric & Water
Humidity Control

- Refrigeration dehumidifies air
- Low temp drop → large evaporator surface area

<table>
<thead>
<tr>
<th>Temperature Drop²</th>
<th>Storeroom Temperature, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Across Evaporator, °F</td>
<td>32°F</td>
</tr>
<tr>
<td>-1°F</td>
<td>95.8</td>
</tr>
<tr>
<td>-2°F</td>
<td>91.2</td>
</tr>
<tr>
<td>-3°F</td>
<td>87.1</td>
</tr>
<tr>
<td>-4°F</td>
<td>83.0</td>
</tr>
<tr>
<td>-5°F</td>
<td>79.4</td>
</tr>
<tr>
<td>-10°F</td>
<td>62.7</td>
</tr>
<tr>
<td>-15°F</td>
<td>49.3</td>
</tr>
</tbody>
</table>

¹ Calculated from Psychrometric Tables

² Actual Airstream temperature drop between inlet and outlet. The coil TD will be approximately twice this value.

Source: Refrigeration and Controlled Atmosphere Storage for Horticultural Crops – NRAES-22
Outdoor Air Cooling

- Fall - use cool night air to reduce refrigeration
- Exchange air
- Controls
 - Manual
 - Automatic
 - Temperature
 - Time of day
- Disadvantage
 - Loss of humidity
 - Colder air is dryer
Outside Air Cooling
Food Farm, Wrenshall, MN

August 1-9, 2002

November 1-9, 2002

January 1-8, 2004

April 2002
Air Flow/Ventilation Patterns

Figure 12: Bulk Storage with Ceiling-Mounted Evaporator Fan
Cold storage
– wall & ceiling clearance

- Nothing stacked above bottom of evaporator
- Wall clearance allows air to cool product
- Space under and between containers
Air Flow with Plenum Wall

- Horizontal slots in plenum wall
- Bins stacked tight
- 2-way fork slot – air duct
- Use for Force-Air pre-cooling
- Humidification in plenum
Air Flow/Ventilation

- Poly tube ventilation
 - Aids in air distribution
 - Helps control condensation
 - Distribute fresh air
- Horizontal Flow fans
 - Keeps air circulating when refrigeration is not running
 - Can use Evaporator fans
- Add Heat
Air Flow Capacity

- Field heat removal / Precooling
 - 100 cfm* per ton of product

- Long Term storage
 - 10-40 cfm per ton of product
 - Crop dependent
 - Use only enough air flow to maintain uniform temperature in storage
 - Typically 1°F difference
 - Variable speed controlled fans to adjust air flow

* Cubic Feet per minute
Lighting

- Wiring must meet National Electric Code
 - Wet environment – Conduit
 - Vapor-proof fixtures
 - 10 foot candles minimum
 - 50 foot candles for inspection/sorting

- Lamp Types
 - T8 fluorescent – Ok
 - LED Tube light - Best
Material Handling

- Bulk
- Pallet Containers
- Tot Boxes
- Racking
- Material Handling equipment
- Traffic flow
Pallet Bins

- Materials:
 - Wood – repairable, heavier, absorb moisture
 - Plastic – FDA approved plastic, easily sanitized
- Rated for loading
- Stackable
- Covers available
- Vented sides / bottom
 - Minimum 8-11% of bottom open
- Handle with Fork Truck or Pallet Jack
- Fit standard racking
Small storage bins

- Stackable
- Plastic – easy to sanitize
- Wood - Repairable
- Durable
- Vented or solid sides
- Vented or drain holes in bottom
- Hand holes
- Lids – micro-environments
Racking

- Allows better access to individual containers
- Better ventilation and cooling
- Keep containers off floor
- Wire shelving – better air flow
- Rolling racks for small walk-ins

Source: http://ervojic.hr/images/uploads/paletni-regali-velika.jpg
http://www.ancostorage.co.uk/acatalog/Kwick_Rack.html
http://www.martforcarts.com/carts/3.html
Material Handling Equipment

- Pallet Jacks
- Pallet Lift
 - Need smooth level hard surface
 - Narrower aisle than needed for fork truck
- Fork Truck
- Skid Steer w/ Pallet Forks
Traffic Flow

- Room to maneuver
 - Type material handling equipment
- Access without moving many things
- Order of use
 - First in, First out
 - Last in, First out
- Pedestrian and vehicle paths separated
- Convenient to packaging & processing area
Rules of Thumb

- 2.5 to 3 cu. ft. of cooler volume per bushel
 - 1.24 cu ft / bushel – 50% utilization
- 4-6” between side walls and containers
- 8-10” between end walls and containers
- 12-18” between of overhead space
Layout Issues

• Wide or length in-efficient for container size
Layout Issues

- Door location doesn’t allow maximum number of containers
Layout Issues

- Door location
- Allows last container to go straight in.
Layout for accessibility

- Aisle Space inside cooler expensive
- Going up cheaper than bigger foot print
Layout for accessibility

- Add doors to reduce aisle space inside cooler
Layout for accessibility

- Add doors to reduce aisle space inside cooler
- Small goods and Bulk area
Layout for accessibility

- Add doors to reduce aisle space inside cooler
- Small goods and Bulk area

Third Door for First in – First Out
Layout for accessibility

- Small quantities / fragile goods / packed produces
Planning!!

- Space requirements
- Material Flow
 - Access to processing area
- Material Handling
- Utility needs
 - Water
 - Electricity
 - Drains/waste
 - Temperature
- Labor
- Future Expansion
Flow Charts – by crop

From Field — Wash — Bulk Bins — Long-Term Storage

- 34°F @ 95% RH

- Packing 5# mesh bags

- Sort by size A & B

- Culls – Food-bank / Compost Pile

- Food Bank

- Compost

Truck to Market

Short-term Storage
Building Layout

- Ramp to Fields
- Loading Dock
- Lunch Rm / Employee Lockers
- Bath / Shower Room
- Office
- Work Alleys
- Belt washer
- Hydro-Cooler
- Sorting equipment
- Packing Line
- Supply Storage Racks
- Cooler #1
- Cooler Access Alley
- Cooler #2
- Cooler #3
Economics of Storage Crops

Factors to consider:

- Cost to build and operate storage units
- Facilities and capacity to move, wash and pack heavy, bulky items during the winter
- Shrink (spoilage and grading)
- Labor costs (benefits)
- Markets and Pricing
- Risk and rewards
Storage Facility Capital Cost

- Multiple units may be needed if you plan to store different products
 - Cold and moist (root crops)
 - Cold and dry (onions, garlic)
 - Cool and dry (squash, swt potato)

- **12 x 12 cooler:**
 - $8,000-$9000 (new)
 - $4,000-$6,000 (used)

- **20 x 30 cooler:**
 - $20,000-$24,000 (new)
 - $12,000-$14,000 (used)
Costs and Pricing

- Higher Costs - Winter storage and sales
 - Add at least 20% more costs (growers’ estimates)
 - Additional handling of product.
- Charge more at winter markets,
 - Achieving positive cash flow during a normally dead time of year.
- Electric costs to run cooler:
 - $2 to $4 per day.
 - Storage units in unheated building/outside during winter require supplemental heating!
Utility Cost Estimates

Madison, WI (12’ x 12’ x 9’)

<table>
<thead>
<tr>
<th>Heating (Btu/mo)</th>
<th>kWh/mo</th>
<th>Heat cost</th>
<th>Refrigeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating (Btu/mo)</td>
<td>kWh/mo</td>
<td>Cooling (Btu/mo)</td>
<td>kWh/mo</td>
</tr>
<tr>
<td>January</td>
<td>220606</td>
<td>68</td>
<td>935570</td>
</tr>
<tr>
<td>February</td>
<td>107586</td>
<td>33</td>
<td>998719</td>
</tr>
<tr>
<td>March</td>
<td>0</td>
<td>0</td>
<td>1396363</td>
</tr>
<tr>
<td>April</td>
<td>0</td>
<td>0</td>
<td>1888260</td>
</tr>
<tr>
<td>May</td>
<td>0</td>
<td>0</td>
<td>2487550</td>
</tr>
<tr>
<td>June</td>
<td>0</td>
<td>0</td>
<td>2768388</td>
</tr>
<tr>
<td>July</td>
<td>0</td>
<td>0</td>
<td>2930126</td>
</tr>
<tr>
<td>August</td>
<td>0</td>
<td>0</td>
<td>2821733</td>
</tr>
<tr>
<td>September</td>
<td>0</td>
<td>0</td>
<td>2491730</td>
</tr>
<tr>
<td>October</td>
<td>0</td>
<td>0</td>
<td>2310927</td>
</tr>
<tr>
<td>November</td>
<td>0</td>
<td>0</td>
<td>1538737</td>
</tr>
<tr>
<td>December</td>
<td>115122</td>
<td>36</td>
<td>1090925</td>
</tr>
<tr>
<td>Yearly heat loss</td>
<td>443313</td>
<td>137</td>
<td>23659027</td>
</tr>
</tbody>
</table>

| Est. Yearly Electric Use | 6089 kWh |
| Est. Yearly Electric Cost | $609 |
Shrinkage and Labor Costs

● Shrinkage
 ● Squash and onions - 20 to 30% - spoil
 ● Root crops - 3 to 10% - culls
 ● Cabbage - 10 to 40% - storage disease

● Labor
 ● Few hours / week – Owner/operator
 ● Part-time / full-time – larger farm
Storage Crop Case Studies

<table>
<thead>
<tr>
<th></th>
<th>Farm A</th>
<th>Farm B</th>
<th>Farm C</th>
<th>Farm D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic Feet of Storage Space</td>
<td>812</td>
<td>6,000</td>
<td>17,374</td>
<td>22,400</td>
</tr>
<tr>
<td>Crops</td>
<td>Roots, Alliums, Squash, Cabbage, Sweet Potatoes</td>
<td>Roots, Alliums, Squash, Cabbage</td>
<td>Roots, Cabbage, Alliums, Squash, Sweet Potatoes</td>
<td>Cabbage, Carrots, Butternut</td>
</tr>
<tr>
<td>Winter Labor</td>
<td>Owner (2-4 hrs / wk)</td>
<td>Owner + 1 part-time (30 hrs / wk)</td>
<td>Owner + 5.5 (80-90 hrs / wk)</td>
<td>Owner + 8 (280 hrs / wk)</td>
</tr>
<tr>
<td>Markets</td>
<td>CSA (Direct Wholesale)</td>
<td>Direct Wholesale CSA and (f. mkts)</td>
<td>Direct Wholesale Distributor & (CSA)</td>
<td>Direct Wholesale (CSA)</td>
</tr>
<tr>
<td>Gross Sales</td>
<td>$14,400</td>
<td>$85,000</td>
<td>$136,000</td>
<td>$250,000</td>
</tr>
<tr>
<td>Gross / cubic ft</td>
<td>$18</td>
<td>$14</td>
<td>$8</td>
<td>$11</td>
</tr>
</tbody>
</table>
Farm Storage Facility Loan Program

- Low interest financing
 - Fixed rate for 2.000% - 7yr, 2.625% - 10yr, 2.875% - 12 yr
 - Up to $500,000
 - 15% down

- Build or upgrade storage and handling facility
 - New cold storage (Used equipment not eligible)
 - Framed structure or prefabricated permanently installed
 - Permanently affix equipment – refrigeration system, lighting, controls
 - Useful life of 15 years or more

- Administered by Farm Service Agency
Summary

- Know the storage requirements for each crop
- Market within the expected storage duration
- Plan storage facilities into work flow / traffic
- Use Foam insulation!!!
- Plan for expansion
- Sanitize storage and containers between seasons
- Price produce to cover additional costs
Resources

 http://learningstore.uwex.edu/Assets/pdfs/A3823.pdf
 http://www.gardening.cornell.edu/factsheets/vegetables/storage.pdf
- Fruit & Vegetable Post Harvest & Storage Information – Website with data sheets on crops from Ambarella to Zinnia.
 http://www.postharvest.com.au/Produce_Information.htm
- Wilhoit, J., Low Cost Cold Storage Room for Market Growers, AEN-96, University of Kentucky Extension, 2009
 http://www2.ca.uky.edu/agc/pubs/aen/aen96/aen96.pdf
- Bubel, Mike & Nancy, Root Cellaring, 2nd Ed, Storey, Pownal, VT, 1991
Questions??

Scott Sanford
Senior Outreach Specialist
Biological System Engineering
University of Wisconsin
sasanford@wisc.edu
608-262-5062