

# Cider Apple Production and Evaluation

C. Miles, G. Moulton, A. Zimmerman, J. Roozen, J. King, and K. Craig

http://maritimefruit.wsu.edu



Cider (also called 'hard cider') is fermented apple juice

Alcohol content is measured as "alcohol by volume" (ABV):

- Ciders worldwide range from 1.2% to 8.5% ABV
- In U.S., cider defined as ≤7% ABV for tax and legal purposes
- New laws proposed to change ABV in U.S.

### Cider sales in the U.S. have increased 54% each year from 2007 through 2012

High quality cider made with specialty cider apples:

- High levels of tannin not found in dessert apples
- Limited production in the U.S.

Cider apple production and artisanal cider is a new market opportunity



### **Research Cider Orchards at WSU**

### 1979 – 6 cider apple varieties first planted at WSU Mount Vernon NWREC

- 1983 to 1994 20 varieties added, observations made on productivity, growth habit, and disease susceptibility
- 1994 cider apple trial orchard established with over 70 different varieties
- 2002 to current varieties evaluated for juice characteristics
- 2010 published results in *Hard Cider Production & Orchard Management in the Pacific Northwest* (PNW 621)





#### Washington State University Mount Vernon Northwestern WA Research and Extension Center





- Long term evaluation of cider apple juice
- Make and evaluate single-varietal ciders
- Establish trained cider sensory panel
- Compare juice of selected cider apple varieties grown at different WA locations
- Evaluate cider apple mechanical harvest using raspberry and blueberry harvesters
- Measure costs of cider apple production
- Provide cider production education in cooperation with NABC
- Publish results website, Extension, journal articles

http://maritimefruit.wsu.edu



#### **Extension Manual**

#### Cider production and research at WSU Mount Vernon NWREC summarized in:

Hard Cider Production & Orchard Management in the Pacific Northwest

A PACIFIC NORTHWEST EXTENSION PUBLICATION • PNW621



Washington State University • Oregon State University • University of Idaho

WSU Extension Manual PNW0621 (2010)



Cider apples classified into 4 categories according to acid and tannin content (Long Ashton Research Station, Bristol, England; Barker, 1903).

| Туре        | Tannin (%)           | Acid (%)            |  |  |
|-------------|----------------------|---------------------|--|--|
| Sharp       | < 0.2<br>Low tannin  | > 0.45<br>High acid |  |  |
| Bittersharp | > 0.2<br>High tannin | > 0.45<br>High acid |  |  |
| Bittersweet | > 0.2<br>High tannin | < 0.45<br>Low acid  |  |  |
| Sweet       | < 0.2<br>Low tannin  | < 0.45<br>Low acid  |  |  |



#### The Role of Tannins in Quality Cider

When fermented, high tannin varieties produce complex flavors, body, and astringency needed to make a balanced cider.

In blending, high tannin varieties add viscosity and satisfying mouth feel to ciders made primarily with dessert apples, which tend to be thin and bland.





### **Examples of Apple Varieties**

## Some common cider varieties and dessert varieties within each type

| Sharp                 | Bittersharp             | Bittersweet         | Sweet         |
|-----------------------|-------------------------|---------------------|---------------|
| Brown's Apple         | Cap of Liberty          | Bedan               | Michelin      |
| Tom Putt              | Domaines                | Chisel Jersey       | Peau de Vache |
| Breakwell Sdlg.       | Foxwhelp                | Dabinett            | Pomme Gris    |
| Frederick             | Frederick Hewes VA Crab |                     | LeBret (Sweet |
| Harrison              | <b>Kingston Black</b>   | Harry Masters' J.   | Alford)       |
| Smith's Cider         | Lambrooke Pip.          | Reine des Pommes    | Sweet Coppin  |
| Bramley's Sdlg.       | Stoke Red               | Porter's Perfection | Taylor's      |
| Golden Russet         | Pearmain,               | Vilberie            | Baldwin       |
| Gravenstein           | Worcester               | Yarlington Mill     | Ben Davis     |
| Jonagold              | Dolgo Crab              | Newtown Pippin      | Gala          |
| <b>Roxbury Russet</b> | Hagloe Crab             | Red Astrachan       | Fuji          |



- Commercial dessert orchards with cull fruit
- Specialty cider orchards
- Purchase raw bulk juice or reconstituted juice
- Start your own orchard for cider apple production





### Sorting & Washing

Process fruit immediately after picking, or leave for a month or so to soften ("sweating")

#### Remove rotten fruit and wash before milling





### **Grinding/Milling**



#### Commercial hammer mill (left), batch type grinder mill (right)



### **Batch & Continuous Presses**



- Small batch mill and press (above left)
- Hydraulic batch press (above right)
- Commercial continuous press (right)

Kickapoo Orchard, Inc., Gay Mills, WI >





#### Pressing

# Add rice hulls and/or enzymes during pressing to increase juice extraction





### **WSU Research Equipment**

- Apple shredder (Zambelli Enotech MuliMax 60)
- Bladder press (40-Liter Enotechnica Pillan)
- Improved efficiency and cleanup between samples



**Apple Shredder** 





### **Evaluating Fruit and Juice**

#### Before harvest, evaluate ripeness using the starch conversion test



Blanpied, G.D. and S.J. Silsby. 1992, Predicting Harvest Date Windows for Apples. Cornell Cooperative Extension. Informational Bulletin 221.



### **WSU Juice Analysis Methods**

- At harvest, collect 15-25 ripe fruit for each variety
- Mill fruit and press juice
- Collect 500 ml juice sample
- Analysis: %tannins
   Brix
   pH
   malic acid (g/l)
   specific gravity



Juice analysis in the WSU cider laboratory



#### % Tannins

- Tannins measured using Lowenthal method of permanganate titration:
  - Standard procedure used at Long Ashton Research Station
  - Can compare WSU data with English data
  - WSU on-line training video: How to Test Tannin Levels in Apple Juice Using Lowenthal Permanganate Titration



Cider juice at start of titration (blue) and at final point (yellow)



### <sup>o</sup>Brix and pH

#### • •Brix – place 2-3 drops juice sample onto refractometer

#### PH – measure 100 ml juice sample with digital pH meter



### < Digital refractometer

#### Digital pH meter >





### Malic Acid (g/l)

- Titrate with 0.2 M solution of sodium hydroxide (NaOH) to 8.1 pH
- Record volume of solution used
- Calculate malic acid using the equation:

Malic acid (g·l<sup>-1</sup>) = ml NaOH x 0.536





### **Cider Juice Analysis**

Table 1. Summary of juice analysis for cider apple varieties grown at WSUMount Vernon NWREC from 2003-2012 (data not collected in 2007).

|                     |              | Tanni | Tannin % |      | Malic Acid g/l |      | °Brix |      | рН   |  |
|---------------------|--------------|-------|----------|------|----------------|------|-------|------|------|--|
| Cultivar            | Yrs<br>Eval. | Mean  | SD       | Mean | SD             | Mean | SD    | Mean | SD   |  |
| Amere de Berthcourt | 3            | 0.48  | 0.20     | 1.90 | 0.53           | 12.9 | 1.55  | 4.31 | 0.14 |  |
| Breakwell Seedling  | 5            | 0.27  | 0.22     | 7.82 | 3.27           | 10.9 | 0.97  | 3.23 | 0.13 |  |
| Brown Snout         | 7            | 0.19  | 0.06     | 3.37 | 0.84           | 13.5 | 1.77  | 3.87 | 0.16 |  |
| Dabinett            | 8            | 0.29  | 0.18     | 2.55 | 1.30           | 14.0 | 1.18  | 4.37 | 0.25 |  |
| Golden Russet       | 5            | 0.13  | 0.05     | 6.64 | 0.91           | 16.9 | 1.33  | 3.67 | 0.25 |  |
| Harrison            | 3            | 0.16  | 0.03     | 7.77 | 2.58           | 15.8 | 0.21  | 3.37 | 0.39 |  |
| Kermerrien          | 6            | 0.37  | 0.09     | 2.44 | 0.21           | 13.2 | 1.22  | 3.76 | 0.25 |  |
| Kingston Black      | 7            | 0.17  | 0.11     | 6.45 | 1.04           | 13.4 | 1.39  | 3.45 | 0.19 |  |
| Medaille D'Or       | 4            | 1.05  | 0.49     | 3.43 | 0.48           | 15.8 | 1.73  | 4.19 | 0.18 |  |

# National Cider Conference February 5-7 2014 Chicago

### www.ciderconference.com



- Many cider apple varieties small-fruited, take up to 4 times longer to hand pick than dessert apples
- Mechanized harvest of cider apples common in Europe
- Mechanized harvest reduces harvest labor, primary cost consideration
- Shake-and-sweep harvest not suitable for trellised cider apple orchards



### **European Harvest Equipment**



#### **Tree Shaker**



#### Harvesters/ Sweepers



- Dwarf and semi-dwarf rootstocks can be damaged by trunk shakers
- Modern apple trellising systems are conducive to small-fruit harvesters
- Small-fruit harvesters sit idle in Western WA during time of cider apple harvest





#### **Small Fruit Harvester**





- Variety Brown Snout
- 2002 planted, 2003 grafted
- Two rootstocks M9 & M27
- 4 replications, 9 trees/plot, 2 treatments
  - Hand & mechanical harvest
  - Juice analysis fresh and stored (3 wk 2011, 2 & 4 wk 2012)





- Low trellis end posts and mid posts 6.5 ft
- Bottom wire 2 ft, middle wire 4 ft, top wire 6 ft
- Center spindle, branches loosely tied wire, branches extend 6-8 in. into the row each side





#### **Data Collection**

- Fruit harvest weight
- Harvest time
- Post harvest tree damage
- Juice Brix, pH, % tannin, malic acid
  Fresh Stored







#### Littau OR0012





#### **Mechanical Harvest**



#### No effect due to rootstock (P > 0.05) - data pooled



**Table 1.** Fruit yield (kg) and harvest efficiency (%) for hand and mechanical harvest of 'Brown Snout' in 2011 and 2012 at WSU Mount Vernon NWREC.

|   |                  |       |      | Harvest                   |      |               |      |                             |        |
|---|------------------|-------|------|---------------------------|------|---------------|------|-----------------------------|--------|
| н | arvest           | Harv  | vest | Post harvest <sup>1</sup> |      | Total harvest |      | efficiency (%) <sup>2</sup> |        |
|   | Туре             | 2011  | 2012 | 2011 2012                 |      | 2011          | 2012 | 2011                        | 2012   |
|   | Hand             | 107.7 | 28.5 | 0                         | 0    | 107.7         | 28.5 | 100 a                       | 100 a  |
| N | <b>/</b> lachine | 73.6  | 20.4 | 22.3                      | 4.0  | 96.0          | 24.3 | 89 b                        | 85 b   |
|   | P-value          | 0.11  | 0.53 | 0.007                     | 0.06 | 0.59          | 0.77 | 0.001                       | 0.0003 |

<sup>1</sup> Post harvest includes remaining fruit on tree and groundfalls
 <sup>2</sup> Harvest efficiency is 'total harvest' divided by 'harvest'

Mechanical 'harvest' is 70% of hand 'harvest'



| Harvest | Total<br>hours/a |      | Cost/a | ncre(\$) |
|---------|------------------|------|--------|----------|
| Method  | 2011             | 2012 | 2011   | 2012     |
| Hand    | 34.5 a 11.8      |      | 554 a  | 212      |
| Machine | 4.2 b 5.4        |      | 81 b   | 104      |
| P-Value | 0.0005           | 0.16 | 0.008  | 0.18     |

Labor \$12/hr; driver \$18/hr - includes taxes and unemployment



|             |         | Spur                |      | Limb                |     | Fruit da                 | amaged | Fruit cut                |       |
|-------------|---------|---------------------|------|---------------------|-----|--------------------------|--------|--------------------------|-------|
| 0414 00 400 | Harvest | damage <sup>1</sup> |      | damage <sup>1</sup> |     | by cuts (%) <sup>2</sup> |        | in half (%) <sup>2</sup> |       |
| 10.000      | Туре    | 2011                | 2012 | 2011 2012           |     | 2011                     | 2012   | 2011                     | 2012  |
|             | Hand    | 1.1                 | 7.0  | 0.1                 | 0.9 | 0 b                      | 0 b    | 0 b                      | 0 b   |
|             | Machine | 2.2                 | 14.3 | 0.6                 | 1.0 | 11.8 a                   | 8.5 a  | 4.5 a                    | 3.5 a |
| 1000        | P-value | 0.46                | 0.1  | 0.25                | 0.9 | 0.006                    | 0.004  | 0.02                     | 0.002 |

<sup>1</sup> per tree <sup>2</sup> per 100 fruit



| Harvest |       |      | Specific | Malic    | Tannin |
|---------|-------|------|----------|----------|--------|
| Method  | °Brix | рН   | Gravity  | $Acid^1$ | %      |
| Hand    | 11.88 | 3.85 | 1.05     | 2.91     | 0.19   |
| Machine | 12.19 | 3.88 | 1.05     | 3.20     | 0.19   |
| P-value | 0.31  | 0.49 | 0.45     | 0.15     | 0.78   |

<sup>1</sup> Malic acid measured in grams/liter



### **Stored Juice Analysis**

|            |            |         |         | Specific |                         | Tannin |
|------------|------------|---------|---------|----------|-------------------------|--------|
| Crush Time |            | °Brix   | рН      | Gravity  | Malic Acid <sup>1</sup> | %      |
| 2011       | At harvest | 10.86 b | 3.82    | 1.04 b   | 2.22                    | 0.15   |
|            | 3 weeks    | 12.05 a | 3.81    | 1.05 a   | 2.34                    | 0.49   |
|            | P-value    | 0.0002  | 0.63    | 0.0001   | 0.18                    | 0.21   |
| 2012       | At harvest | 13.19 b | 3.91 a  | 1.05 c   | 3.89 b                  | 0.24   |
|            | 2 weeks    | 14.76 a | 3.79 b  | 1.06 b   | 4.30 ab                 | 0.26   |
|            | 4 weeks    | 15.51 a | 3.85 ab | 1.07 a   | 4.56 a                  | 0.23   |
|            | P-value    | 0.0003  | 0.07    | <0.0001  | 0.09                    | 0.27   |

<sup>1</sup>Malic acid measured in grams/liter



- Mechanical harvest efficiency 87%, on average
- Picking cost 7 times lower in 2011 (high yield year) and 2 times lower in 2012 (low yield year)
- Tree damage doubled with mechanical harvest, but still relatively low
- 100% bruising, 10% cut, and 4% sliced fruit with mechanical harvest
- No difference in fresh juice quality; higher sugar and specific gravity in stored fruit



#### 2013 Mechanical Harvest Research





#### **Increase Tree Density**

#### **Trellis Rows**

#### **Fruiting Wall**





#### **Oregon State University**

University of Massachusetts (J. Clements)





# Thanks to the supporters of WSU cider apple research.

Washington State Dept. of Agriculture Northwest Agriculture Business Center WSU Center for Sustaining Agriculture & Natural Resources (CSANR) Northwest Cider Association Northwest Agricultural Research Foundation