WASHINGTON STATE SUNIVERSITY
World Class. Face to Face.

Cider Apple Production and Evaluation

 ?C. Miles, G. Moulton, A. Zimmerman,
J. Roozen, J. King, and K. Craig
http://maritimefruit.wsu.edu

Introduction

Cider (also called 'hard cider') is fermented apple juice
Alcohol content is measured as "alcohol by volume" (ABV):

- Ciders worldwide range from 1.2\% to 8.5\% ABV
- In U.S., cider defined as $\leq 7 \%$ ABV for tax and legal purposes
- New laws proposed to change ABV in U.S.

Cider sales in the U.S. have increased 54\% each year from 2007 through 2012

High quality cider made with specialty cider apples:

- High levels of tannin not found in dessert apples
- Limited production in the U.S.

Cider apple production and artisanal cider is a new market opportunity

Research Cider Orchards at WSU

World Class. Face to Face.
1979 - 6 cider apple varieties first planted at WSU Mount Vernon NWREC

1983 to 1994 - 20 varieties added, observations made on productivity, growth habit, and disease susceptibility

1994 - cider apple trial orchard established with over 70 different varieties

2002 to current - varieties evaluated for juice characteristics

2010 - published results in Hard Cider Production \& Orchard Management in the Pacific Northwest (PNW 621)

WashingTon State园UNIVERSITY
World Class. Face to Face.

Washington State University Mount Vernon Northwestern WA Research and Extension Center

Overview of WSU Research Program

World Class. Face to Face.

* Long term evaluation of cider apple juice
* Make and evaluate single-varietal ciders
* Establish trained cider sensory panel
* Compare juice of selected cider apple varieties grown at different WA locations
* Evaluate cider apple mechanical harvest using raspberry and blueberry harvesters
* Measure costs of cider apple production
* Provide cider production education in cooperation with NABC
* Publish results - website, Extension, journal articles
http://maritimefruit.wsu.edu

Extension Manual

Cider production and research at WSU Mount Vernon NWREC summarized in:

WSU Extension
Manual
PNW0621 (2010)

Hard Cider Production \& Orchard Management in the Pacific Northwest

A PACIFIC NORTHWEST EXTENSION PUBLICATION • PNWG21

Washington State Univerully * Oregon State Univernity • Univeriity of Idaho

Apple Types

Cider apples classified into 4 categories according to acid and tannin content (Long Ashton Research Station, Bristol, England; Barker, 1903).

Type	Tannin (\%)	Acid (\%)
Shap	<0.2 Low tannin	>0.45 High acid
Bittershap	>0.2 High tannin	>0.45 High acid
Bittersweet	>0.2 High tannin	<0.45 Low acid
Sweet	<0.2 Low tannin	<0.45 Low acid

The Role of Tannins in Quality Cider

When fermented, high tannin varieties produce complex flavors, body, and astringency needed to make a balanced cider.

In blending, high tannin varieties add viscosity and satisfying mouth feel to ciders made primarily with dessert apples, which tend to be thin and bland.

Some common cider varieties and dessert varieties within each type

Shap	Bittershap	Bittersweet	Sweet
Brown's Apple Tom Putt Breakwell Sdlg. Frederick Hanison Smith's Cider Bramley's Sdlg. Golden Russet Gravenstein Jonagold Roxbury Russet	Cap of Liberty Domaines Foxwhelp Hewes VA Crab Kingston Black Lambrooke Pip. Stoke Red Pearmain, Worcester Dolgo Crab Hagloe Crab	Bedan Chisel J ersey Dabinett Frequin Rouge Hany Masters' J. Reine des Pommes Porter's Perfection Vilberie Yarlington Mill Newtown Pippin Red Astrachan	Michelin Peau de Vache Pomme Gris LeBret (Sweet Alford) Sweet Coppin Taylor's Baldwin Ben Davis Gala Fuji

Obtaining Fruit

* Commercial dessert orchards with cull fruit
* Specialty cider orchards
* Purchase raw bulk juice or reconstituted juice

Start your own orchard for cider apple production

Sorting \& Washing

* Process fruit immediately after picking, or leave for a month or so to soften ("sweating")
* Remove rotten fruit and wash before milling

WASHINGTON STATE

Kickapoo Orchard, Inc., Gay Mills, WI

Grinding/Milling

Commercial hammer mill (left), batch type grinder mill (right)

WashingTon State UNIVERSITY
World Class. Face to Face.

Batch \& Continuous Presses

- Small batch mill and press (above left)
- Hydraulic batch press (above right)
- Commercial continuous press (right)

WASHingTon State

Pressing

* Add rice hulls and/or enzymes during pressing to

 increase juice extraction

WSU Research Equipment

* Apple shredder (Zambelli Enotech MuliMax 60)
* Bladder press (40-Liter Enotechnica Pillan)
* Improved efficiency and cleanup between samples

Apple Shredder

WashingTon State

World Class. Face to Face.

Evaluating Fruit and Juice

* Before harvest, evaluate ripeness using the starch conversion test

[^0]
WSU Juice Analysis Methods

* At harvest, collect 15-25 ripe fruit for each variety
* Mill fruit and press juice
* Collect 500 ml juice sample
* Analysis:
\%tannins
${ }^{\circ}$ Brix
pH
malic acid (g / l)
specific gravity

Juice analysis in the WSU cider laboratory

\% Tannins

* Tannins measured using Lowenthal method of

 permanganate titration:- Standard procedure used at Long Ashton Research Station
- Can compare WSU data with English data
- WSU on-line training video: How to Test Tannin Levels in Apple Juice Using Lowenthal Permanganate Titration

Cider juice at start of titration (blue) and at final point (yellow)

${ }^{\circ}$ Brix and pH

* ${ }^{\text {oBrix }}$ - place 2-3 drops juice sample onto refractometer
* pH - measure 100 ml juice sample with digital pH meter

< Digital refrac tometer

Digital pH meter

Malic Acid (g/l)

* Titrate with 0.2 M solution of sodium hydroxide (NaOH) to 8.1 pH
* Record volume of solution used
* Calculate malic acid using the equation:

Malic acid $\left(\mathrm{g}^{-1}\right)=$ $\mathrm{ml} \mathrm{NaOH} \times 0.536$

Cider Juice Analysis

Table 1. Summary of juice analysis for cider apple varieties grown at WSU Mount Vernon NWREC from 2003-2012 (data not collected in 2007).

		Tannin \%		Malic Acid g/I		${ }^{\text {obrix }}$		pH	
Cultivar	$\begin{gathered} \text { Yrs } \\ \text { Eval. } \end{gathered}$	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Amere de Berthcourt	3	0.48	0.20	1.90	0.53	12.9	1.55	4.31	0.14
Breakwell Seedling	5	0.27	0.22	7.82	3.27	10.9	0.97	3.23	0.13
Brown Snout	7	0.19	0.06	3.37	0.84	13.5	1.77	3.87	0.16
Dabinett	8	0.29	0.18	2.55	1.30	14.0	1.18	4.37	0.25
Golden Russet	5	0.13	0.05	6.64	0.91	16.9	1.33	3.67	0.25
Harrison	3	0.16	0.03	7.77	2.58	15.8	0.21	3.37	0.39
Kermerrien	6	0.37	0.09	2.44	0.21	13.2	1.22	3.76	0.25
Kingston Black	7	0.17	0.11	6.45	1.04	13.4	1.39	3.45	0.19
Medaille D'Or	4	1.05	0.49	3.43	0.48	15.8	1.73	4.19	0.18

Cider Apple Mechanical Harvest

Many cider apple varieties small-fruited, take up to 4 times longer to hand pick than dessert apples

Mechanized harvest of cider apples common in Europe

* Mechanized harvest reduces harvest labor, primary cost consideration
* Shake-and-sweep harvest not suitable for trellised cider apple orchards

Washington State园UNIVERSITY World Class. Face to Face.

European Harvest Equipment

Tree Shaker

Molaignes, France (G. Holder)

Harvesters/ Sweepers

Mechanical Harvest at WSU NWREC

* Dwarf and semi-dwarf rootstocks can be damaged by trunk shakers
* Modern apple trellising systems are conducive to small-fruit harvesters
* Small-fruit harvesters sit idle in Western WA during time of cider apple harvest

Small Fruit Harvester

World Class. Face to Face.

NWREC Study Design

Variety - Brown Snout

* 2002 planted, 2003 grafted
* Two rootstocks - M9 \& M27
* 4 replications, 9 trees/plot, 2 treatments
- Hand \& mechanical harvest
- Juice analysis fresh and stored (3 wk 2011, 2 \& 4 wk 2012)

Training System

* Low trellis - end posts and mid posts 6.5 ft
* Bottom wire 2 ft , middle wire 4 ft , top wire 6 ft
* Center spindle, branches loosely tied wire, branches extend 6-8 in. into the row each side

Data Collection

* Fruit harvest weight
* Harvest time
* Post harvest tree damage
* Juice Brix, pH, \% tannin, malic acid Fresh Stored

WashingTon State *UNIVERSITY
World Class. Face to Face.

Littau OR0012

WASHINGTON STATE

Mechanical Harvest

Before

No effect due to rootstock $(P>0.05)$ - data pooled

Fruit Weight Per Plot

Table 1. Fruit yield (kg) and harvest efficiency (\%) for hand and mechanical harvest of 'Brown Snout' in 2011 and 2012 at WSU Mount Vernon NWREC.

Harvest Type	Fruit Weight (kg)						Harvest efficiency (\%) ${ }^{2}$	
	Harvest		Post harvest ${ }^{1}$		Total harvest			
	2011	2012	2011	2012	2011	2012	2011	2012
Hand	107.7	28.5	0	0	107.7	28.5	100 a	100 a
Machine	73.6	20.4	22.3	4.0	96.0	24.3	89 b	85 b
P-value	0.11	0.53	0.007	0.06	0.59	0.77	0.001	0.0003

${ }^{1}$ Post harvest includes remaining fruit on tree and groundfalls ${ }^{2}$ Harvest efficiency is 'total harvest' divided by 'harvest'

Mechanical 'harvest' is 70\% of hand 'harvest'

Picking Time

Total labor

Harvest Method

Hand
Machine

34.5 a	11.8
4.2 b	5.4
0.0005	0.16

Cost/acre(\$)
20112012
554 a
212
81 b
104
P-Value
0.0005
0.16
0.008
0.18

Labor $\$ 12 / \mathrm{hr}$, driver $\$ 18 / \mathrm{hr}$

- includes taxes and unemployment

WASHINGTON STATE

Tree Damage

World Class. Face to Face.

Harvest Type	Spur damage ${ }^{1}$		Limb damage ${ }^{1}$		Fruit damaged by cuts (\%) ${ }^{2}$		Fruit cut in half (\%) ${ }^{2}$	
	2011	2012	2011	2012	2011	2012	2011	2012
Hand	1.1	7.0		0.9	0	0	0 b	0
Machine	2.2	14.3	0.6	1.0	11.8 a	8.5 a	4.5 a	3.5 a
P-value	0.46	0.1	0.25	0.9	0.006	0.004	0.02	0.002

${ }^{1}$ per tree $\quad{ }^{2}$ per 100 fruit

Fresh Juice Analysis

\section*{Specific Malic Tannin} Method ${ }^{\circ}$ Brix pH Gravity Acid ${ }^{1}$ \% $\begin{array}{llllll}\text { Hand } & 11.88 & 3.85 & 1.05 & 2.91 & 0.19\end{array}$ $\begin{array}{llllll}\text { Machine } & 12.19 & 3.88 & 1.05 & 3.20 & 0.19\end{array}$	P-value	0.31	0.49	0.45	0.15	0.78

${ }^{1}$ Malic acid measured in grams/liter

Stored Juice Analysis

Specific

Crush Time		${ }^{\circ}$ Brix	pH	$\begin{array}{c}\text { Specific } \\ \text { Gravity }\end{array}$	Malic Acid 1	Tannin
\%						

${ }^{1}$ Malic acid measured in grams/liter

Summary of Harvest Study

* Mechanical harvest efficiency 87\%, on average

Picking cost 7 times lower in 2011 (high yield year) and 2 times lower in 2012 (low yield year)

* Tree damage doubled with mechanical harvest, but still relatively low
* 100\% bruising, 10\% cut, and 4\% sliced fruit with mechanical harvest
* No difference in fresh juice quality; higher sugar and specific gravity in stored fruit

WASHINGTON STATE SUNIVERSTY World Class. Face to Face.

2013 Mechanical Harvest Research

BEI harvester

WASHINGTON STATI

Increase Tree Density

Trellis Rows

Fruiting Wall

Oregon State University

University of Massachusetts (J. Clements)

Thanks to the supporters of WSU cider apple research.

Washington State Dept. of Agriculture Northwest Agriculture Business Center WSU Center for Sustaining Agriculture \& Natural Resources (CSANR)
Northwest Cider Association
Northwest Agricultural Research Foundation

[^0]: Blanpied, G.D. and S.J. Silsby. 1992, Predicting Harvest Date Windows for Apples. Cornell Cooperative Extension. Informational Bulletin 221.

