### Pest Monitoring and Options for Peach Pest Control



Dr. Donn Johnson

Department of Entomology, University of Arkansas, Fayetteville, AR 72701 Email: dtjohnso@uark.edu; Cell: 479-409-4628 Great Plains Growers Conference, St. Joseph, MO on 7 January, 2016

UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability

# Outline

Spray Guides (online) Pesticide Efficacy Table (handout) Non-Pyrethroid Options Symptoms, Monitoring and Identification (handout) **Biology** (handout) Predict Pests Emergence Using Degree Days Recommended Control Mating Disruption Discussion



Center for Agricultural and Rural Sustainability

### 2015 SOUTHEASTERN PEACH, NECTARINE & PLUM PEST MANAGEMENT AND CULTURE GUIDE

Online: http://www.ent.uga.edu/peach/PeachGuide.pdf

### Midwest Fruit Pest Management Guide 2016 Combined MW tree and small fruit/grape guides: Online: <u>https://ag.purdue.edu/hla/Hort/Documents/ID-168.pdf</u>



Center for Agricultural and Rural Sustainability

# Peach Insecticide And Miticide Classes And Efficacy Ratings

Source: 2015 SE Peach, Nectarine & Plum IPM & Culture Guide Online: <u>http://www.ent.uga.edu/peach/PeachGuide.pdf</u>

UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability

| Common Name (MOA #)                   | Trade Name(s)           | Scale | Thrips | Oriental fruit<br>moth | Plum curculio | Plant or<br>Stink bugs | June beetles,<br>etc. | Mites | Borers |
|---------------------------------------|-------------------------|-------|--------|------------------------|---------------|------------------------|-----------------------|-------|--------|
| abamectin (6)                         | Agri-Mek                | -     | -      | -                      | -             | -                      | -                     | ++++  | -      |
| acetamiprid (4A)                      | Assail                  | +++   | ++     | ++++                   | ++            | ++                     | +++++                 | -     | +++    |
| beta cyfluthrin (3A)                  | Baythroid XL            | -     | +      | +++++                  | ++++          | +++                    | ++++                  | -     | ++     |
| bifenazate (UN)                       | Acramite                | -     | -      | -                      | -             | -                      | -                     | +++++ | -      |
| buprofezin (16)                       | Centaur                 | +++++ | -      | -                      | -             | -                      | -                     | -     | -      |
| carbaryl (1A)                         | Sevin                   | -     | -      | +++                    | ++            | ++                     | +++++                 | -     | +++    |
| chlorantraniliprole (28)              | Altacor                 | -     | -      | +++++                  | ++            | -                      | -                     | -     | +++    |
| chlorpyrifos (1B)                     | Chlorpyrifos<br>Lorsban | +++   | -      | -                      | -             | -                      | -                     | -     | +++++  |
| clofentezine (10A)                    | Apollo                  | -     | -      | -                      | -             | -                      | -                     | ++++  | -      |
| clothianidin (4A)                     | Belay                   | -     | +      | ++                     | ++++          | +++                    | ++++                  | -     | ++     |
| cyfluthrin (3A)                       | Renounce<br>Tombstone   | -     | +      | +++++                  | +++           | +++                    | ++++                  | -     | ++     |
| cyfluthrin (3) +<br>imidacloprid (4A) | Leverage                | -     | +      | ++++                   | +++           | +++                    | ++++                  | -     | ++     |
| cyhexatin (12B)                       | Vendex                  | -     | -      | -                      | -             | -                      | -                     | +++   | -      |
| diazinon (1B)                         | Diazinon                | +++   | +      | ++++                   | ++            | ++                     | ++++                  | -     | +      |
| esfenvalerate (3A)                    | Adjourn<br>Asana        | -     | +      | +++++                  | +++ - ++++    | ++                     | ++++                  | -     | ++     |
| etoxazole (10B)                       | Zeal                    | -     | -      | -                      | -             | -                      |                       | ++++  | -      |
| fenpropathrin (3A)                    | Danitol                 | -     | ++     | +++++                  | ++++          | ++++                   | ++++                  | ++    | ++     |
| flubendiamide (28)                    | Belt                    | -     | -      | +++++                  | ++            | -                      | -                     | -     | +++    |
| formetanate (1A)                      | Carzol                  | -     | +++    | -                      | -             | ++++                   | -                     | +++   | -      |
| gamma cyhalothrin (3)                 | Proaxis                 | -     | +      | +++++                  | ++ - ++++     | ++++                   | ++++                  | -     | ++     |
| hexythiazox (10A)                     | Savey                   | -     | -      | -                      | -             | -                      | -                     | ++++  | -      |

UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE

#### http://www.ent.uga.edu/peach/PeachGuide.pdf

| Common Name (MOA #)                            | Trade Name(s)                                      | Scale      | Thrips | Oriental fruit<br>moth | Plum curculio | Plant or<br>Stink bugs | June beetles,<br>etc. | Mites | Borers      |
|------------------------------------------------|----------------------------------------------------|------------|--------|------------------------|---------------|------------------------|-----------------------|-------|-------------|
| horticultural oils                             | miscellaneous                                      | +++ - ++++ | -      | -                      | -             | -                      | -                     | ++    | -           |
| imidacloprid (4A)                              | Couraze<br>Nuprid<br>Pasada<br>Provado             | -          | -      | -                      | -             | -                      | +++                   | -     | -           |
| indoxacarb (22A)                               | Avaunt                                             | -          | -      | ++++                   | ++++          | -                      | -                     | -     | +           |
|                                                | Isomate-L<br>(pheromone mating<br>disruption ties) | -          | -      | -                      | -             | -                      | -                     | -     | +++ to ++++ |
| lambda cyhalothrin (3A)                        | Lambda-T<br>Silencer<br>Taiga Z<br>Warrior         | -          | +      | +++++                  | ++++          | ++                     | ++++                  | -     | +           |
| lambda-cyhalothrin +<br>thiamethoxam (3A + 4A) | Endigo ZC                                          | -          | +      | ++++                   | ++++          | +++                    | ++++                  | -     |             |
| malathion (1B)                                 | Malathion                                          | +          | +      | ++                     | ++            | +                      | +                     | +     | +           |
| methomyl (1A)                                  | Lannate                                            | -          | ++     | ++                     | +             | ++                     | ++                    | -     | -           |
| novaluron (15)                                 | Rimon                                              | -          | +      | ++++                   | +             | +                      | -                     | -     | +           |
| permethrin (3A)                                | Ambush<br>Pounce                                   | -          | +      | +++++                  | ++            | ++                     | ++++                  | -     | +           |
| phosmet (1B)                                   | Imidan                                             | -          | -      | +++++                  | +++++         | ++++                   | ++++                  | -     | +           |
| pyridaben (21A)                                | Nexter                                             | -          | -      | -                      | -             | -                      | -                     | ++++  | -           |
| pyriproxyfen (7C)                              | Esteem<br>Knack                                    | +++++      | -      | ++                     | -             | -                      | -                     | -     | -           |
| spinetoram (5)                                 | Delegate                                           | -          | ++++   | ++++                   | -             | -                      | -                     | -     | +           |
| spinosad (5)                                   | SpinTor<br>Entrust                                 | -          | ++     | ++                     | -             | -                      | -                     |       | -           |
| spirodiclofen (23)                             | Envidor                                            | -          | -      | -                      | -             | -                      | -                     |       | -           |
| spirotetramat (23)                             | Movento                                            | +++++      | -      | -                      | -             | -                      | -                     | -     | -           |
| thiamethoxam (4A)                              | Actara                                             | -          | +      | ++                     | ++++          | +++                    | ++++                  | -     | -           |
| zeta cypermethrin (3A)                         | Mustang                                            | -          | +      | +++++                  | ++++          | ++                     | ++++                  | -     | ++          |

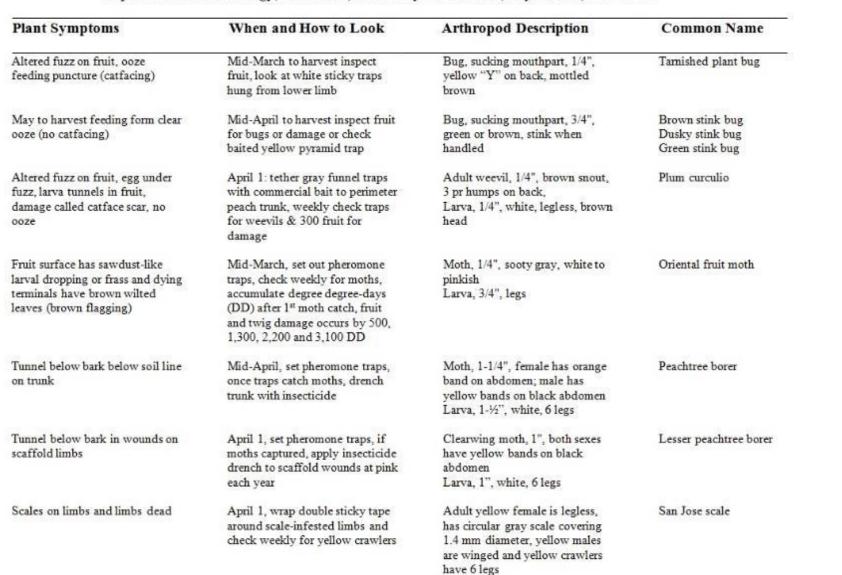
UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE

http://www.ent.uga.edu/peach/PeachGuide.pdf

#### Non-Pyrethroid Options for Peach Insect Control

E = Excellent G = Good F = Fair — no activity

|          | РНІ  | REI  | Scales | Plant<br>bug | Plum<br>Curc. | OFM | Jap.<br>beetle | Stink<br>bug |
|----------|------|------|--------|--------------|---------------|-----|----------------|--------------|
| Actara   | 14 d | 12 h | G      | E            | E             | F   | E              | G            |
| Assail   | 12 d | 12 h | G      | G            | G             | G   | Е              | G            |
| Belay    | 21 d | 12 h | G      | E            | E             | F   | E              | G            |
| Provado  | 0    | 12 h | F      | _            | _             | _   | Е              | _            |
| Avaunt   | 14 d | 12 h | _      | _            | E             | E   | F              | -            |
| Imidan   | 14 d | 3 d  | F      | F            | E             | E   | Е              | F            |
| Altacor  | 10 d | 4 h  | —      | _            | F             | E   | _              | -            |
| Delegate | 7 d  | 4 h  | _      | _            | F             | Е   | _              | _            |
| Esteem   | 14 d | 12 h | E      | _            | —             | G   | _              | -            |
| Centaur  | 14 d | 12 h | Е      | _            | _             | _   | _              | -            |
| Diazinon | 21 d | 4 d  | G      | G            | G             | G   | F              | F            |
| Lorsban  | _    | 24 h | E      | _            | _             | _   | _              | _            |
| Movento  | 7 d  | 24 h | E      | _            | —             | —   | —              | -            |


#### **NC STATE** UNIVERSITY

Dr. Jim Walgenbach

#### PEACH PLANT SYMPTOMS AND ARTHROPOD IDENTIFICATION

Dr. Donn Johnson and Barbara A. Lewis

Department of Entomology, AGRI 319, University of Arkansas, Fayetteville, AR 72701



UNIVERSITY OF ARKANSAS DIVISION OF AGRICULT

#### Center for Agricultural and Rural Sustainability

Dr. Donn Johnson, Fruit Entomology

HANDOUT

|                        | Mar | Apr            | May     | Jun Jul | Aug Sep |  |  |  |
|------------------------|-----|----------------|---------|---------|---------|--|--|--|
| Peach                  | D P | <b>B PF SO</b> | Thin PH | HAR     | VEST    |  |  |  |
| Scales                 |     |                |         |         |         |  |  |  |
| Spider<br>mites        |     |                |         |         |         |  |  |  |
| Plum<br>curculio       |     |                |         |         |         |  |  |  |
| Stink bug              |     |                |         |         |         |  |  |  |
| Oriental<br>fruit moth |     |                |         |         |         |  |  |  |
| Lesser<br>PTBorer      |     |                |         | *       |         |  |  |  |
| Greater<br>PTBorer     |     |                |         |         |         |  |  |  |

#### HANDOUT

UNIVERSITY OF ARKANSAS D = dormant; P = pink; B = bloom; PF = petal fall;DIVISION OF AGRICULTURE SO = shuck off; T = thin fruit by pit hardening (PH)


### Weekly, Check for these Peach Pests:



- Mid-March
  - Oriental fruit moth set trap in tree
- Apr 1
  - Lesser peachtree borer set trap in tree & check scaffold wounds for pupal skins
  - Plum curculio tie black pyramid trap to perimeter tree trunk on ground
    - Stink bug set yellow pyramid trap between perimeter trees on ground
- May 1
  - Check scale crawler set trap on limb
  - Greater peachtree borer set trap



in tree











# **Trap & Pest Management Suppliers**



http://www.agbio-inc.com/



Alpha Scents, Inc.: http://www.alphascents.com/



http://www.iscatech.com/ exec/index.html



http://www.gemplers.com/ insect-monitoring





http://www.greatlakes ipm.com/

OF ARKANSAS Center AGRICULTURE and Ru

Center for Agricultural and Rural Sustainability

# **Monitoring Form**

Mean numbers per trap or Percentage damage per 300 fruit

|      | San Jose Scale |                            | San Jose Scale Plum Curculio |                 |                 | Stin            | k Bug          | Peachtr       | Oriental<br>Fruit<br>Moth |
|------|----------------|----------------------------|------------------------------|-----------------|-----------------|-----------------|----------------|---------------|---------------------------|
| Date | Males/<br>trap | Crawlers<br>/ tape<br>trap | Adults<br>/trap              | % new<br>damage | Adults<br>/trap | % new<br>damage | Greater<br>PTB | Lesser<br>PTB | Males/<br>trap            |
|      |                |                            |                              |                 |                 |                 |                |               |                           |
|      |                |                            |                              |                 |                 |                 |                |               |                           |
|      |                |                            |                              |                 |                 |                 |                |               |                           |



## Physiological Time (degree-days = DD)

Source: <a href="http://ipm.ucdavis.edu/WEATHER/ddphenology.html">http://ipm.ucdavis.edu/WEATHER/ddphenology.html</a>

- Poikilothermic insects are cold-blooded
- Physiological time (expressed in DD)
  - Number of heat units accumulated daily between the lower (LDT) and upper (UDT) developmental thresholds required to complete growth before molting to next stage

#### • Why use a phenology model?

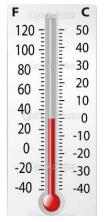
- Predict time of pest emergence
- Pest damage rarely occurs on the same calendar date every year

# How to Calculate Degree Days (DD)

 $DD = \frac{daily Max + daily Min}{2} - X = \frac{80 + 50}{2} - 50 = 75 - 50 = 15 DD$ 

Base Temperatures:

 $X = 45^{\circ}F$  for Oriental fruit moth


 $X = 50^{\circ}F$  for plum curculio

 $X = 51^{\circ}F$  for San Jose scale

Spray after:

- > 400 DD since 1<sup>st</sup> trap catch, egg hatch starts
- > 200 DD since 2 days > 70°F with PC trap catch will be start of egg hatch
- > 600 DD since 1<sup>st</sup> male in trap = peak of crawler emergence

UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURI Center for Agricultural and Rural Sustainability



Max/Min chart – use your daily thermometer readings to determine daily DD (Ex. for Plum Curculio)



| PLUM       | CURC | ULIO | DEGRE | E DAY | S (50°F |    | ER BAS | SE, 88° | F UPPE | R BAS | E) AT | VARIO | US DAI | LY MA | XIMUN |    | MINIMU | JM TEN | IPERA | TURES |
|------------|------|------|-------|-------|---------|----|--------|---------|--------|-------|-------|-------|--------|-------|-------|----|--------|--------|-------|-------|
| Max<br>Min | 54   | 56   | 58    | 60    | 62      | 64 | 66     | 68      | 70     | 72    | 74    | 76    | 78     | 80    | 82    | 84 | 86     | 88     | 90    | 92    |
| 20         | 0    | 1    | 1     | 2     | 2       | 3  | 3      | 4       | 5      | 5     | 6     | 7     | 8      | 9     | 9     | 10 | 11     | 12     | 13    | 14    |
| 22         | 2    | 1    | 1     | 2     | 2       | 3  | 3      | 4       | 6      | 6     | 6     | 7     | 8      | 9     | 10    | 10 | 11     | 12     | 13    | 14    |
| 24         | 0    | 1    | 1     | 2     | 2       | 3  | 4      | 4       | 6      | 6     | 7     | 7     | 8      | 9     | 10    | 11 | 11     | 12     | 13    | 14    |
| 26         | 0    | 1    | 1     | 2     | 2       | 3  | 4      | 4       | 6      | 6     | 7     | 7     | 8      | 9     | 10    | 11 | 12     | 12     | 13    | 14    |
| 28         | 0    | 1    | 1     | 2     | 2       | 3  | 4      | 4       | 6      | 6     | 7     | 8     | 8      | 9     | 10    | 11 | 12     | 13     | 14    | 15    |
| 30         | 0    | 1    | 1     | 2     | 2       | 3  | 4      | 5       | 6      | 6     | 7     | 8     | 9      | 10    | 10    | 11 | 12     | 13     | 14    | 15    |
| 32         | 0    | 1    | 1     | 2     | 3       | 3  | 4      | 5       | 6      | 6     | 7     | 8     | 9      | 10    | 11    | 11 | 12     | 13     | 14    | 15    |
| 34         | 0    | 1    | 1     | 2     | 3       | 3  | 4      | 5       | 6      | 7     | 7     | 8     | 9      | 10    | 11    | 12 | 13     | 14     | 14    | 15    |
| 36         | 0    | 1    | 1     | 2     | 3       | 4  | 4      | 5       | 6      | 7     | 8     | 8     | 9      | 10    | 11    | 12 | 13     | 14     | 15    | 16    |
| 38         | 0    | 1    | 1     | 2     | 3       | 4  | 4      | 5       | 6      | 7     | 8     | 9     | 10     | 11    | 11    | 12 | 13     | 14     | 15    | 16    |
| 40         | 0    | 1    | 2     | 2     | 3       | 4  | 5      | 6       | 6      | 7     | 8     | 9     | 10     | 11    | 12    | 13 | 14     | 15     | 16    | 17    |
| 42         | 0    | 1    | 2     | 2     | 3       | 4  | 5      | 6       | 7      | 7     | 8     | 9     | 10     | 11    | 12    | 13 | 14     | 15     | 16    | 17    |
| 44         | 0    | 1    | 2     | 3     | 3       | 4  | 5      | 6       | 7      | 8     | 9     | 10    | 11     | 12    | 13    | 14 | 15     | 15     | 16    | 17    |
| 46         | 0    | 1    | 2     | 3     | 4       | 5  | 5      | 6       | 7      | 8     | 9     | 10    | 11     | 12    | 13    | 14 | 15     | 16     | 17    | 18    |
| 48         | 1    | 1    | 2     | 3     | 4       | 5  | 6      | 7       | 8      | 9     | 10    | 11    | 12     | 13    | 14    | 15 | 16     | 17     | 18    | 19    |
| 50         | 1    | 2    | 2     | 3     | 4       | 5  | 6      | 7       | 8      | 9     | 10    | 11    | 12     | 13    | 14    | 15 | 16     | 17     | 18    | 19    |

http://www.ent.uga.edu/peach/PeachGuide.pdf


Oregon State University Online Phenology DD models http://uspest.org/cgi-bin/ddmodel.us?

Satellite

alle City

Map

Then click **?** for weather station on map near you. Pick model for OFM or SJS or codling moth for plum curculio (both 50F)



line Phenology and Degree-day Mode

Rea

(48) King City

Maysville

Pattonsburg

agricultural and pest management decision mak

### **Potential Reasons for Scale Problems**

- No yearly use of bud swell Superior oil with or without insecticide effective against SJS
  - Coverage can be difficult on older trees (increase gallonage)
- Over-reliance on pyrethroid insecticides for general insect control. Pyrethroids are harmful to SJS parasitoids and are known to aggravate scale problems.
- Abnormal weather conditions, often mild winters result in low overwinter scale mortality.
- Nearby source of scales (unsprayed trees) allows for wind-assisted movement of crawlers into orchards.

#### Dr. Jim Walgenbach

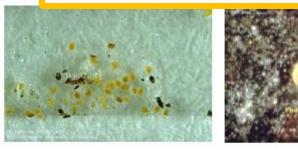
**NC STATE UNIVERSITY** 

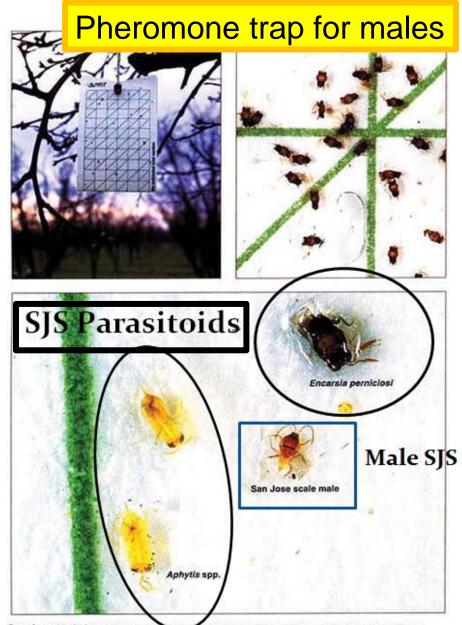
# San Jose Scale



#### **Biology:**

- Overwinter on limbs and trunk under scale cover
- <u>Early-Apr.</u>, males emerge, fly, mate with females, and females lay amber eggs under cover
- <u>May</u> = crawlers hatch, form cover 9 days later
  Scouting: see next slide


### San Jose Scale on Limb

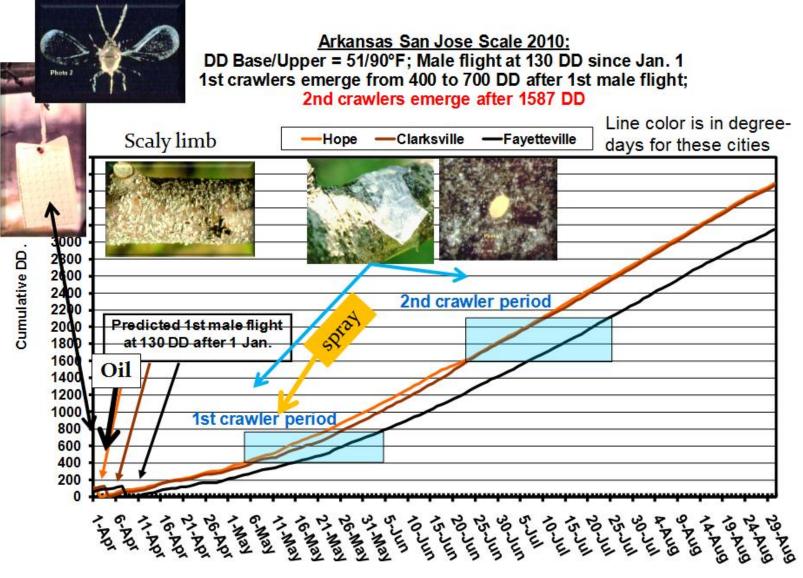



#### Tape Trap for Crawlers Wrapped on Limb



#### **Crawlers on Tape**






San Jose scale has become an increasingly damaging pest in many almond-growing regions of California. However, the numbers trapped in the study orchards, located in Merced and Stanislaus counties, were very low. *Clockwise from top left*, Sticky traps are used to monitor San Jose scale males; the numbers of a key San Jose Scale parasitoid, *Encarsia perniciosi*, were significantly higher in the BIOS orchards; the abundance of another San Jose scale parasitoid, *Aphytis* spp., did not vary significantly between BIOS and conventional orchards.

# San Jose Scale DD Model

| === |      | ==== | ====== |     | ===== | =====[ | EVEN | NTS TA | ABLE==================================== |
|-----|------|------|--------|-----|-------|--------|------|--------|------------------------------------------|
| 1.  | 305  | DD   | after  | 1st | male  | from   | OW   | gen:   | 100 degree-days until first crawler      |
| 2.  | 405  | DD   | after  | 1st | male  | from   | OW   | gen:   | first crawler emergence                  |
| 3.  | 605  | DD   | after  | 1st | male  | from   | OW   | gen:   | UC Davis rec. crawler treatment          |
| 4.  | 723  | DD   | after  | 1st | male  | from   | OW   | gen:   | first second instars                     |
| 5.  | 936  | DD   | after  | 1st | male  | from   | OW   | gen:   | first pupae                              |
| 6.  | 1031 | DD   | after  | 1st | male  | from   | OW   | gen:   | 1st male catch next generation           |
| 7.  | 1050 | DD   | after  | 1st | male  | from   | OW   | gen:   | first mating next generation             |
| 8.  | 1455 | DD   | after  | 1st | male  | from   | OW   | gen:   | first crawlers second generation         |

UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability



**Insecticides for crawlers**: Exteem, Centaur, Movento, Assail, Belay, Admire Pro

UA <u>UNIVERSITY OF ARKANSAS</u> DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability

### Alternatives To Chlorpyrifos for Adult Scale EPA may cancel Lorsban use

- Control SJS on all bearing and non-bearing trees:
- April and May, reduce pyrethroid use to protect SJS parasitoids
- Near bud swell:

**NC STATE UNIVERSITY** 

- If low scale density use 1% to 1.5% oil alone
- If moderate to hi scale density apply 1% to 1.5% Superior oil with Diazinon 4E
- <u>95% leaf fall</u>, apply 1% to 1.5% Superior oil
- Best scale kill by applying oil between 28° to 65°F with no cold snap in 2- to 3-day forecast

 <u>Do not apply a sulfur-containing fungicide within two</u> weeks of an oil application

http://www.ent.uga.edu/peach/PeachGuide.pdf

## Alternatives To Chlorpyrifos for Scale Crawler Control

When crawlers are detected on trees:

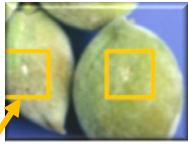
**NC STATE UNIVERSITY** 

- <u>Mid-May</u> apply Esteem (4-5 oz/A) or Centaur (2.15 lbs/A) at peak of 1<sup>st</sup> gen crawler emergence
- <u>Late-June</u>, apply Esteem or Centaur or Assail if 2<sup>nd</sup> gen. crawlers present
- <u>Post-harvest</u>, apply Diazinon when crawlers present



http://www.ent.uga.edu/peach/PeachGuide.pdf

# Plum Curculio DD Model


- Adult weevils overwinter in debris especially in adjacent woodlots or <u>unmowed</u> orchard
- <u>Mid-Mar.</u> adults begin dispersing to orchard after two days exceeding 70<sup>0</sup>F (biofix date)
- Early April:

 100-600 DD - feed and lay eggs = white spots
 200 to 800 DD - eggs hatch, larvae tunnel into fruit, catfacing damage, exit fruit, pupate in soil

• <u>Early-June</u>, 1200 DD summer adults emerge, feed on fruit, lay eggs and larvae tunnel in fruit













Center for Agricultural and Rural Sustainability

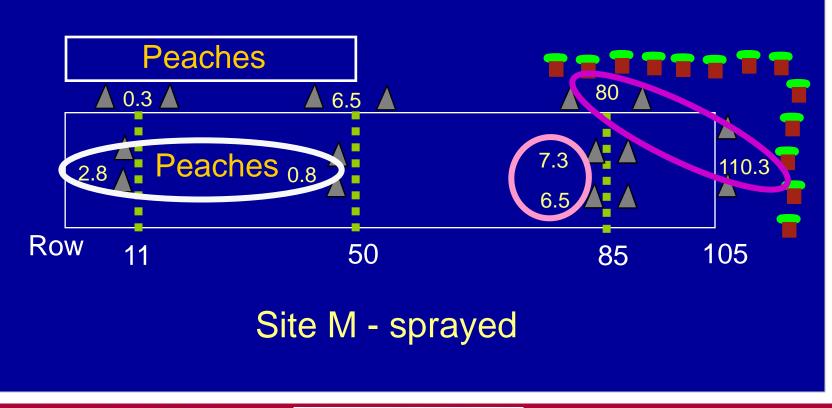
# **Plum Curculio Monitoring**

#### After $1^{st}$ day in March $\geq 70^{\circ}$ F:

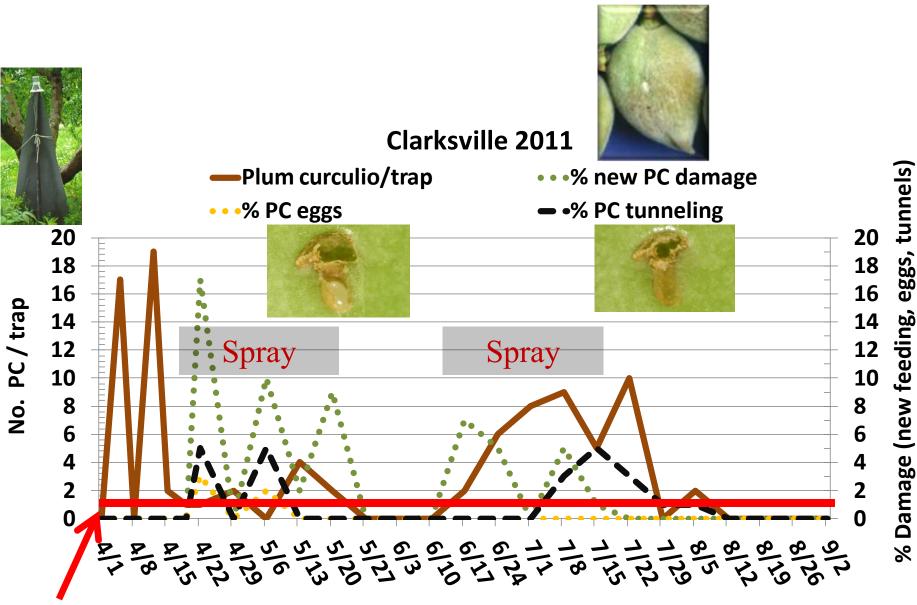
- Tether four pyramid traps to perimeter peach trees adjacent to woods
- Twice weekly, check traps for PC adults






- Weekly, check 300 fruit for new PC damage
- <u>Economic threshold (spray)</u>: ET > 1 PC/ trap/ week or ET > 1% new PC damage

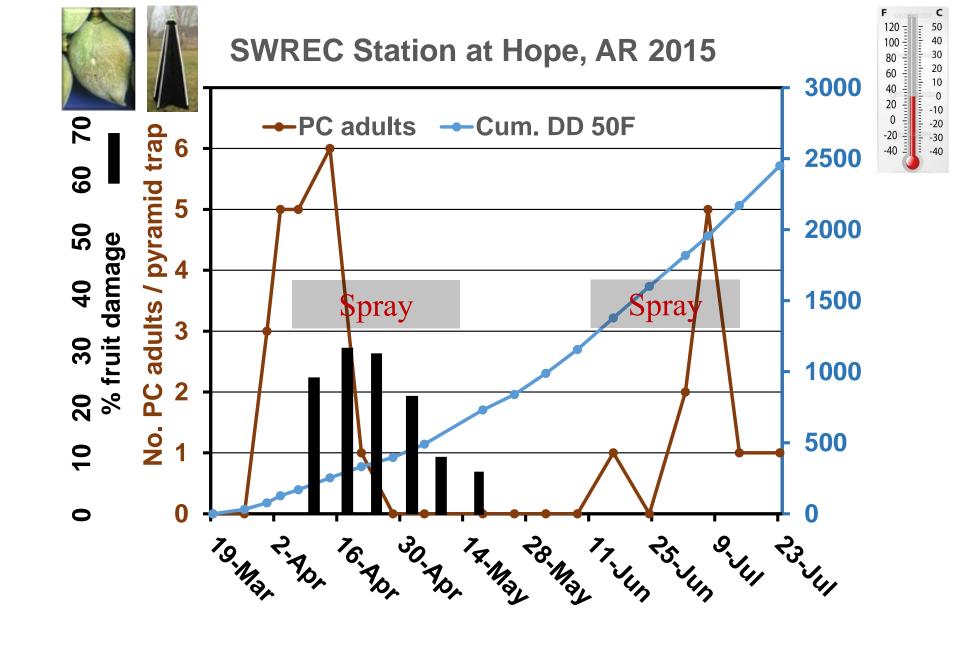
on peach (white fuzz spots) Time to spray


A <u>UNIVERSITY OF ARKANSAS</u> DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability



### More Season Total Catch of Plum Curculio Adults in Pyramid Traps (A) in Orchard Edge than Interior



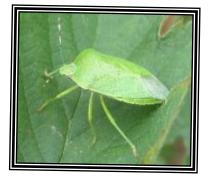

UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability



#### ET = 1 PC/trap/week



Center for Agricultural and Rural Sustainability




JA UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability

#### 2015 SOUTHEASTERN PEACH, NECTARINE AND PLUM PEST MANAGEMENT AND CULTURE GUIDE Online: <u>http://www.ent.uga.edu/peach/PeachGuide.pdf</u>

#### **Recommended insecticides - Plum curculio:**

- Imidan, Actara and Belay provide excellent control and longer early season residual control of plum curculio than pyrethroids. Rotation of Imidan, Actara, or Belay and Avaunt with pyrethroids should help protect the resistance-prone pyrethroid class
- Actara (MOA 4A), Belay (MOA 4A) and Avaunt (MOA 22) are effective, reduced risk, organophosphate replacements
- Delay Pyrethroid use until May or later to preserve natural enemies: Baythroid, Mustang, Proaxis, Tomstone, Warrior



### **Stink Bugs**



- <u>Mid-April to May</u>, move into orchard, puncture fruit causing catface damage
- <u>Late May and early June</u>, mate, lay egg mass and nymphs develop









 <u>After pit hardening to harvest</u>, clear thread of ooze exudes from stink bug puncture



Center for Agricultural and Rural Sustainability



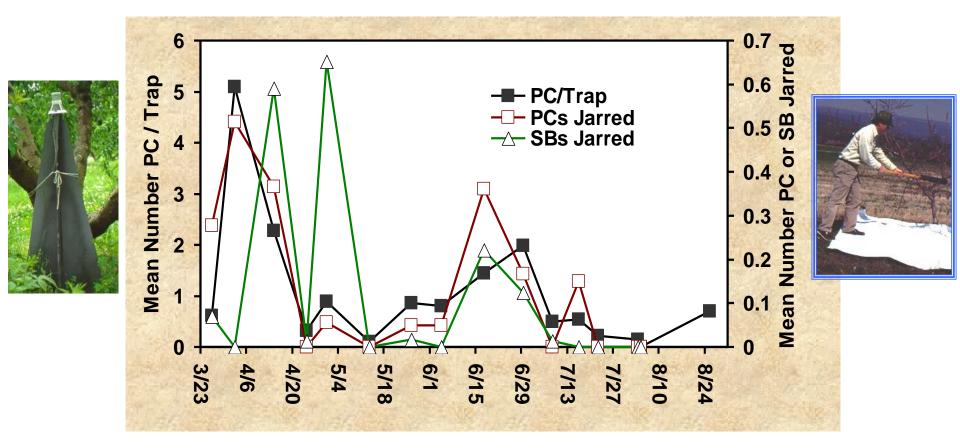


Dr. Donn Johnson, Fruit Entomology

# Stink Bug Monitoring

Petal fall:

- Set out brown stink bug yellow pyramid traps in perimeter and bait with lure of aggregation pheromone
- Record weekly counts of:
  - $\,\circ\,$  Stink bugs / trap or /limb jar and % new fruit damage




#### DEAD-INN stink bug trap \$18 ea



Center for Agricultural and Rural Sustainability

### Monitoring Shows Similar Timing of Catches of Plum Curculio and Stink Bugs



UfA <u>UNIVERSITY OF ARKANSAS</u> DIVISION OF AGRICULTURE

#### 2015 SOUTHEASTERN PEACH, NECTARINE AND PLUM PEST MANAGEMENT AND CULTURE GUIDE Online: <u>http://www.ent.uga.edu/peach/PeachGuide.pdf</u>

#### **Tentative economic threshold for SB:**

- Spray if > 10 SB/baited yellow trap or
- Spray if > 1 SB / limb jarring or > 1% new catfacing

#### **Recommended insecticides - Stink bug:**

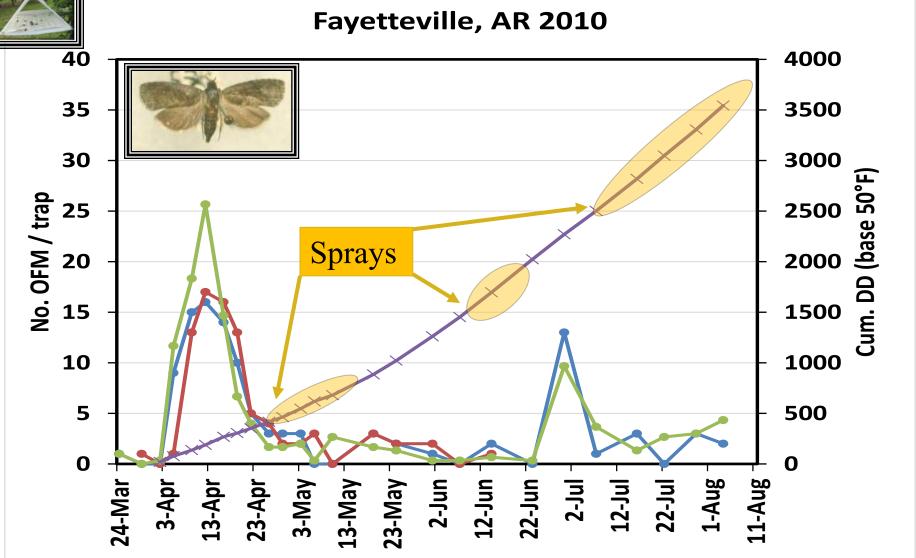
- Pyrethroids: Danitol, Actara, Baythroid, Belay, Endigo, Renounce or Tombstone, Leverage (mixture)
- Imidan (organophosphate)

<u>**Cultural control</u>**: less bugs in orchard if weed-free ground cover in and around orchard</u>

# **Oriental Fruit Moth Biology/Monitoring**

- <u>Mid-March</u>, set out pheromone trap inside orchard, check weekly
- <u>Mid-March</u> moths emerge, mate and lay eggs on leaves
- <u>April</u>, 1<sup>st</sup> generation larvae bore into terminal tips and some fruit
- <u>Summer</u>, 2<sup>nd</sup> and 3<sup>rd</sup> generations enter fruit
- <u>Mid-August & September</u>, larvae enter new succulent terminals
- In September, larvae go to overwintering sites




UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability

| RELATIONSHIP BETWEEN DEGREE-DAY ACCUMULATIONS<br>AFTER BIOFIX AND BIOLOGICAL EVENTS OF ORIENTAL<br>FRUIT MOTH<br>(45°F LOWER BASE, 90°F UPPER BASE)* |                                             |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| Cumulative degree-days                                                                                                                               | <b>Biological Event</b>                     |  |  |  |  |  |
| 175                                                                                                                                                  | first adult emergence                       |  |  |  |  |  |
| 250                                                                                                                                                  | first eggs laid                             |  |  |  |  |  |
| 325 to 425                                                                                                                                           | peak adult emergence                        |  |  |  |  |  |
| 525                                                                                                                                                  | peak egg laying                             |  |  |  |  |  |
| 950                                                                                                                                                  | first emergence of second generation adults |  |  |  |  |  |
| 1,100                                                                                                                                                | first eggs laid by second generation        |  |  |  |  |  |
| 1,300 to 1,425                                                                                                                                       | peak emergence of second generation adults  |  |  |  |  |  |
| 1,500                                                                                                                                                | peak egg laying by second generation adults |  |  |  |  |  |
| 1,900                                                                                                                                                | first emergence of third generation adults  |  |  |  |  |  |
| 2,200 to 2,450                                                                                                                                       | peak emergence of third generation adults   |  |  |  |  |  |
| 2,500                                                                                                                                                | peak egg laying by third generation adults  |  |  |  |  |  |
| * Modified from Michigan State                                                                                                                       | University Fact Sheet                       |  |  |  |  |  |

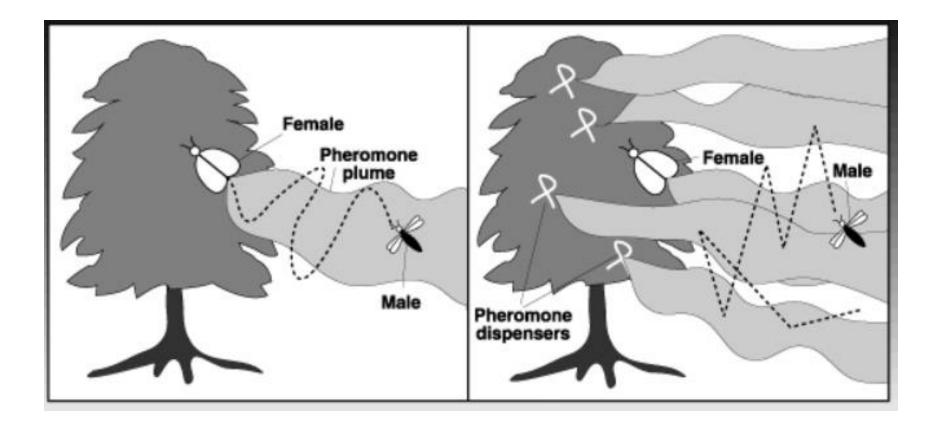
UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE

http://www.ent.uga.edu/peach/PeachGuide.pdf

# Oriental Fruit Moth Trap Catch



UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability


#### 2015 SOUTHEASTERN PEACH, NECTARINE AND PLUM PEST MANAGEMENT AND CULTURE GUIDE

Online: <u>http://www.ent.uga.edu/peach/PeachGuide.pdf</u>

#### **Recommended insecticides - Oriental fruit moth:**

- Imidan (organophosphate)
- Spinosad Delegate
- Pyrethroids: Asana, Baythroid, Warrior, Mustang
- Mating disruption (MD): multiple point sources of sex pheromone dispensed in orchard given:
  - Orchard must exceed 5 acres
  - Works best in fairly square blocks
    - $\circ$  Narrow blocks have edge effects females outside can mate and enter orchard and lay eggs in edge trees)
  - $_{\odot}$  Low pest density (apply insecticide to reduce density then use MD)

# How Mating Disruption Works



http://jenny.tfrec.wsu.edu/opm/displaySpecies.php?pn=-80

UA UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE

Jay F. Brunner and Alan Knight (1993)

# Mating Disruption

- 1986, OFM pheromone was registered for MD
- Since 1990, MD controlled OFM in > 10,000 acres of peaches
- Control of oriental fruit moth with pheromone mating disruption (MD) often better than with conventional insecticidal control.
- MD is being tested against peachtree borers

### **OFM Mating Disruption Options**



Isomate OFM TT (100 per acre)





CheckMate OFM F (1-1.3 oz/A) Suterra

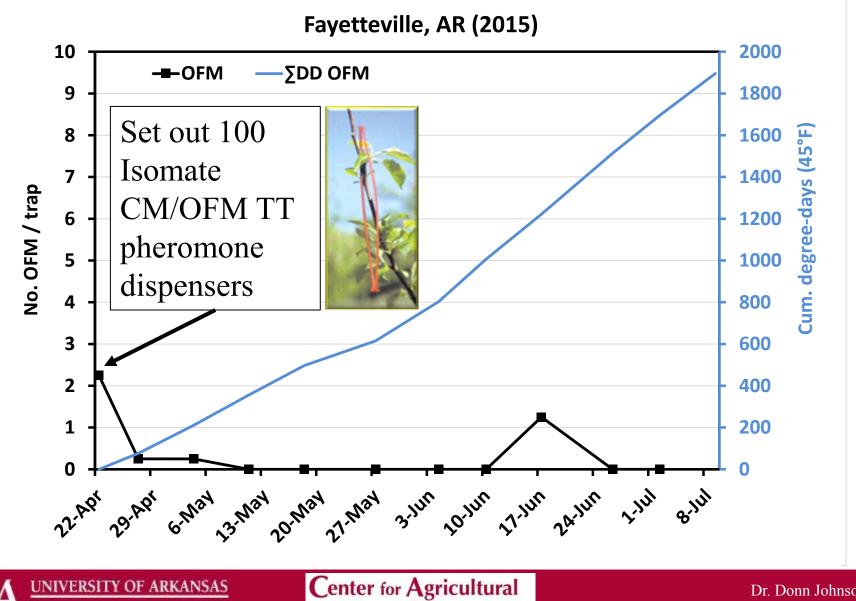


CheckMate OFM (100-150 per acre)



No-Mate OFM (100 per acre)




CheckMate Puffer OFM (1 puffer/acre)

Place dispensers in tree at first trap catch of moths in pheromone trap

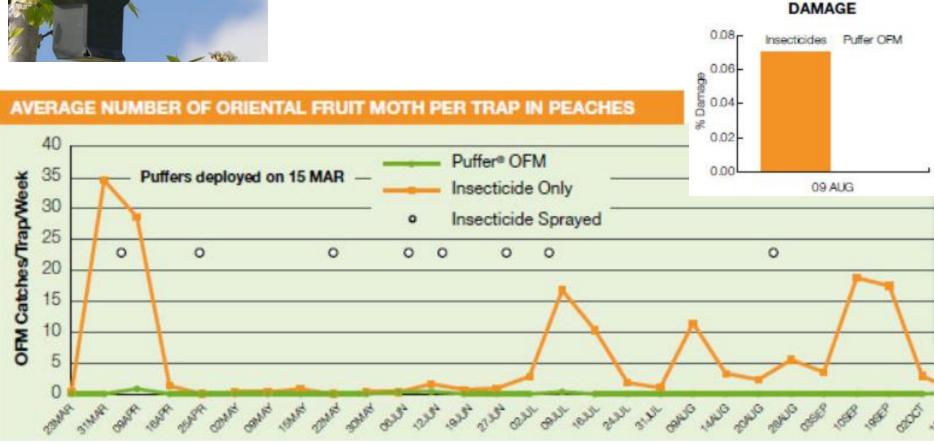
#### **NC STATE UNIVERSITY**

Modified from: Dr. Jim Walgenbach

### Mating Disruption of OFM – no wormy fruit



and **Rural Sustainability** 


SION OF AGRICULT



UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE

### Mating Disruption: Suterra Puffers

http://suterra.com/wp-content/uploads/2014/ 05/puffer-efficacy.jpg



## Mating Disruption Dispensers available from Great Lakes IPM

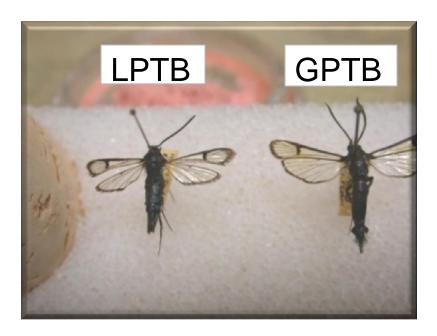
| DESCRIPTION                                                                                                                                      | FIELD LIFE   | ORDER NO.     | <u>QTY</u> |                  | ACRES<br>REATED |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------------|------------------|-----------------|
| Codling Moth                                                                                                                                     | 120-140 Days | ISM-C+        | 400/pk     | \$ 100.00        | 1               |
| Codling Moth Flex                                                                                                                                | Full Season  | ISM-CM FLEX   | 400/pk     | \$ 105.00        | 1 - 2           |
| CM Twin Tube                                                                                                                                     | 120-140 Days | ISM-CTT       | 400/pk     | \$ 200.00        | 2               |
| CM Mist Full Season ISM-CM Mist 1 Can Call for Pricing 1/2-2 (CM Mist includes 1 pheromone can, 1 emitter, and 1 hanger. Use 1-2 cans per acre). |              |               |            |                  |                 |
| CM/OFM Twin Tube                                                                                                                                 | 180 Days     | ISM-CM/OFM TT | 400/pk     | Call for Pricing | 2               |
| Dogwood Borer                                                                                                                                    | Full Season  | ISM-DWB       | 500/pk     | \$ 200.00        | 3.3             |
| Grape Root Borer                                                                                                                                 | Full Season  | ISM-GRB       | 600/pk     | Call for Pricing | 6               |
| Oriental Fruit Moth Rosso                                                                                                                        | 120 Days     | ISM-OFM Rosso | 400/pk     | \$ 156.00        | 2               |
| Oriental Fruit Moth TT                                                                                                                           | 180 Days     | ISM-OFMTT     | 200/pk     | \$ 125.00        | 1-2             |
| Peachtree Borer Dual                                                                                                                             | 180 Days     | ISM-PTBD      | 500/pk     | Call for Pricing | 3.3             |

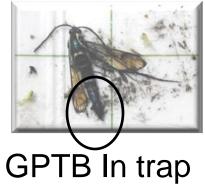
JA UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability

## Registered for use in a few states

<u>Need growers to request state registration</u>

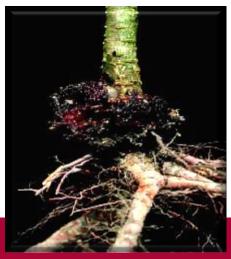
#### **ISOMATE PRODUCTS ARE REGISTERED IN THE FOLLOWING STATES:**


| C+        | CA, CO, MI, MT, WA                     |
|-----------|----------------------------------------|
| CTT       | CA, CO, ID, MI, MN, OR, WA, WI         |
| CM FLEX   | AZ, CO, ID, IL, MI, NM, OH, OR, UT, WA |
| CM MIST   | CA, ID, MI, OH, OR, WA                 |
| CM/OFM TT | IL, MI, OH                             |
| DWB       | MI, OH                                 |
| GRB       | FL, TN                                 |
| OFM ROSSO | CA, CO, ID, IL, MI, MO, OH, OR, WA     |
| OFM TT    | CA, MI                                 |
| PTB DUAL  | AZ, IL, MI, OH                         |
|           |                                        |


Center for Agricultural and Rural Sustainability

### Lesser and Greater Peachtree Borers
















## Lesser Peachtree Borer Biology/Monitoring









- <u>Late-March</u>, hang pheromone trap inside orchard and check weekly
- <u>April to August</u>, adults emerge & lay eggs by wounds on scaffold limbs
- Look for pupal skins in limb wounds
- <u>All summer</u>, larvae tunnel in scaffold limbs
  - Limb strength reduced
  - Pathogens enter limb (death)

M <u>UNIVERSITY OF ARKANSAS</u> DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability





Dr. Donn Johnson, Fruit Entomology

## Greater Peachtree Borer Biology/Monitoring

Center for Agricultural

and **Rural Sustainability** 

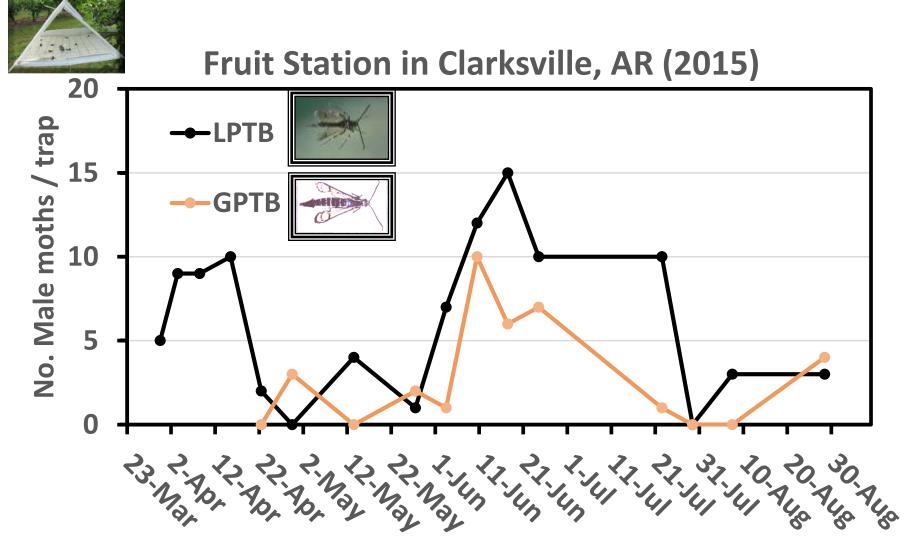








- <u>Early-May</u>, hang pheromone trap inside orchard and check weekly
- <u>May to August</u>, adults emerge and lay eggs on trunk
- <u>Mid-May to next April</u>, larvae tunnel lower trunk below soil
  - Tree vigor reduced


IVERSITY OF ARKANSAS

SION OF AGR

- Small trees girdled & killed



## Lesser and Greater Peachtree Borers



UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE Center for Agricultural and Rural Sustainability

### LPTB Control by Lorsban (may be banned) Possible Alternatives?

- <u>Pre-bloom</u>, 1.5% Superior oil + chlorpyrifos spray of LPTB
- <u>April May</u>, hi-rate pyrethroid applications during peak LPTB trap captures
- Mating disruption
- Entomopathogenic nematodes and fungi

### GPTB Control by Lorsban (may be banned) Any Alternatives?

 <u>After harvest</u>, but no earlier than 1 July, use handgun to apply Lorsban to drench lower trunk and soil (100 gal./acre)



Center for Agricultural and Rural Sustainability

# ACKNOWLEDGEMENTS

#### Funding:

- This work was supported by the USDA National Institute of Food and Agriculture, Hatch project accession number 223689
- ➤ USDA/SARE LS12250
- Specialty Crop Block Grant Program through Arkansas Agriculture Department and Extension IPM



Center for Agricultural and Rural Sustainability

## Discussion?



Center for Agricultural and Rural Sustainability