Increasing Energy Efficiency in Greenhouses

Marc Plinke, Dr. Ing.
Ceres Greenhouse Solutions
marc@ceresgs.com
www.ceresgs.com

What is a solar greenhouse? Don't all greenhouses use the sun?

Types of greenhouses

Cold frames & Hoop houses

- A good 1st step but limited
- Cheap upfront, costly over time

Conventional Greenhouses

 No insulation; hard to grow many things year-round without heating

Solar greenhouses

 Rely on the solar energy for growth, plus heating and cooling needs

4 Design Principles of a Smart Greenhouse

- 1. Glazing just right
- 2. Insulation wherever there is no glazing
- 3. Earth is your friend use it wisely. The greenhouse is just the top of the iceberg AND without good soil you will not succeed no matter how good the greenhouse
- 4. Increase thermal storage Phase change, water, stone, etc.

Conventional Greenhouse

Orientation
North - South

Ceres Greenhouse

Orientation East - West

Challenges with Conventional Greenhouses

- No insulation or heat retention = very high heating load if trying to grow many crops through the winter
- Not made for high wind or snow loads

The Problem: Conventional Greenhouse Design

R-Value normal greenhouse: 2 (best case) Heating / cooling cost: \$3-4/SF/ year

R-Value normal house: 8-15 Heating / cooling cost: \$0.10-\$1 /SF/year

A typical greenhouse is 30x more energy intensive than a home if growing year-round in most N. American climates

So how do we get there?

HighYield™ Steel Prefab Greenhouses

A Ceres™ Greenhouse will be more than 90% more efficient than a conventional greenhouse saving \$200,000 (heating with propane) over 10 years in St. Joseph with min. temp of 50F

HighYield™ Framing

- 14 gauge hot dipped galvanized steel
- Rust proof, 25 year warranty
- Local snow and wind requirements up to 95 psf and 130 mph, stamped engineered architectural plans
- Shorter install time, no need for specialized heavy equipment
 Scalable from 30 feet to 200 feet.

The best Polycarbonate

- Designed to maximize 24 ft material spans
- Highest snow and wind load can be designed as needed
- Thickest upper layer for best hail resistance
- 10 yr warranty
- Aluminum Megalock™ track system dovetails with steel stud framing
- Leak proof design
- Ample opportunity for sealing around glazing
- Easy to replace polycarbonate if ever needed

High Yield: Tougher Insulation

- 24 gauge embossed steel built to last
- 2" to 6" thick up to R-42
- Insulated metal panels (IMPS) go on the outside and automatically provide inside walls
- Easy install, impermeable vapor and air barrier
- A variety of colors and finishes

HighYield™: The Complete Package

Custom Greenhouse

Many variations

Alberta Canada

Colorado

Dallas, Tx

China

Colorado

One step further... A Ground to Air Heat Transfer (GAHT) System

Cooling

Hot days & the summer

Heating Cold days & the winter

GAHT system in practice

Phase Change Material (PCM)

- Think of this as water 2.0.
- It works to store and release energy in the same way as water does, but can store / release much more energy in a much smaller space.
- Why? Because by absorbing / releasing energy during the phase change from a liquid to a solid
- Heat storage capacity about 5x more than the same volume of water

Other options

- Rocket mass stoves
- Compost heaters
- Solar hot water

Photos:

Top- The Sage School, Idaho Bottom – Verge Permaculture, Alberta Canada

+ Renewable Power

+ Growing systems

Customizable

Combine with chicken coops, sheds, sunrooms, sitting area, saunas

Educational

The Result

An abundant year-round garden that relies on the sun

Your own slice of Costa Rica, right in your back yard

Fresh, home-grown bananas, veggies, tomatoes, figs...

Fresh, local food grown food that is smart, sustainable & abundant is possible with energy-efficient greenhouse design!

THE YEAR-ROUND Solar Greenhouse

How to Design and Build a Net-Zero Energy Greenhouse

LINDSEY SCHILLER with MARC PLINKE

By LINDSEY SCHILLER and MARC PLINKE

Marc Plinke, Dr. Ing.
Ceres Greenhouse Solutions
marc@ceresgs.com

ceresgs.com