Growing in Hydroponic and Soil-less Culture

Cary Rivard, KSU

Content provided by Chieri Kubota (UA-CEAC), Mark Kroggel (UA-CEAC), and Kimberly Williams (KSU)

Total Area in Major Greenhouse Production Countries in the World

	Country	Greenhouse area (ha)	Reference
1	China	2,760,000 (2010)	Yang, 2011
2	Korea	57,444 (2009)	Lee, 2011
3	Spain	52,170	EuroStat, 2005
4	Japan	49,049	MAFF, 2011
5	Turkey	33,515	TurkStat, 2007
6	Italy	26,500	EuroStat, 2007
7	Mexico	11,759	SAGARPA, 2010
8	Morocco	11,161	Choukr-Allah, 2004
9	Netherlands	10,370	EuroStat, 2007
10	France	9,620	EuroStat, 2005
11	United States	8,425	US Census of Hort. Spec., 2010

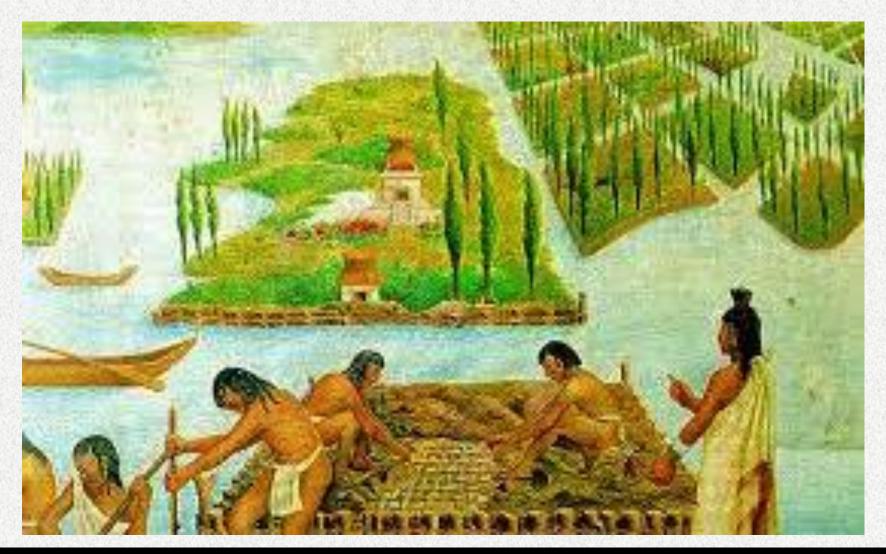
(The data presented excludes low tunnel and shade structures covered areas)

(Kacira 2010)

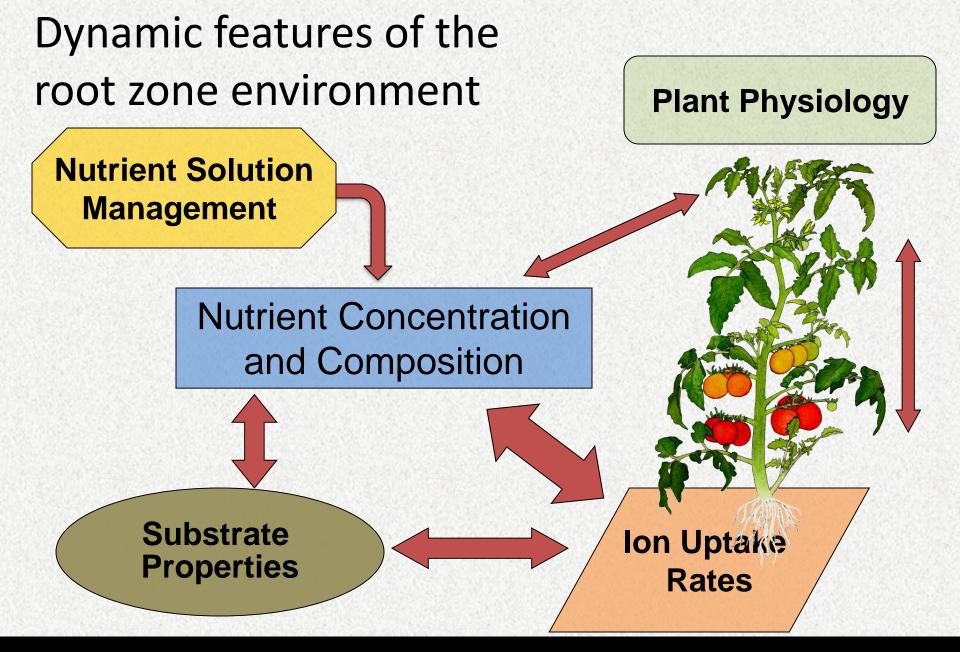
Fresh tomato production in CEA

- Tomato dominates CEA in US (~60% of total production area under controlled environment)
- Increasing competition in North American tomato market

US (USDA, 2009)

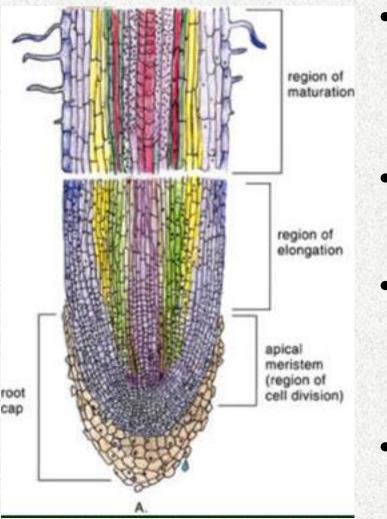

CA production area % in the US (USDA, 2015)

Most common high-production system: High-wire system with drip irrigation


Ballpark yield (mid to large fruit type): 60 kg/m² per year (132 lb/ft²)

Growing Without Soil

Hydroponics



Hydroponics

Copyright © 2008 Pearson Benjamin Cummings. All rights reserved.

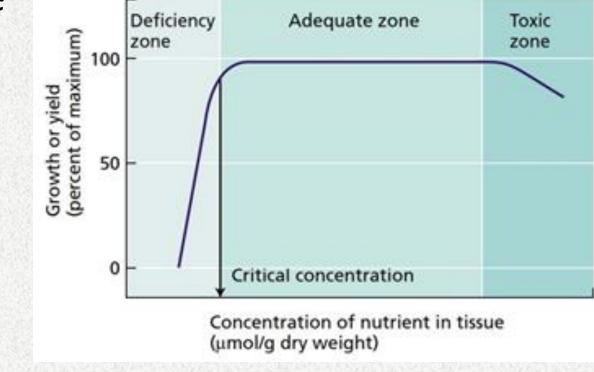
Functions of Plant Roots

- Living plant cells
 - Respiration (need O_2)
 - Affected by temperature
- Ion exchange
 - Passive and active
- Root growth
 - Need carbohydrates
 - Root cap
- Interact with microbes
 Root exudation

Essential Elements for Plant Growth

- Macronutrients
 Primary: N, P, K,
 Secondary: Ca, Mg, S
- Micronutrients Fe, Mn, Zn, Cu, B, Mo, Cl
- Essential but not applied as fertilizers
 C, H, O

Chemical forms in solution when absorbed by plants

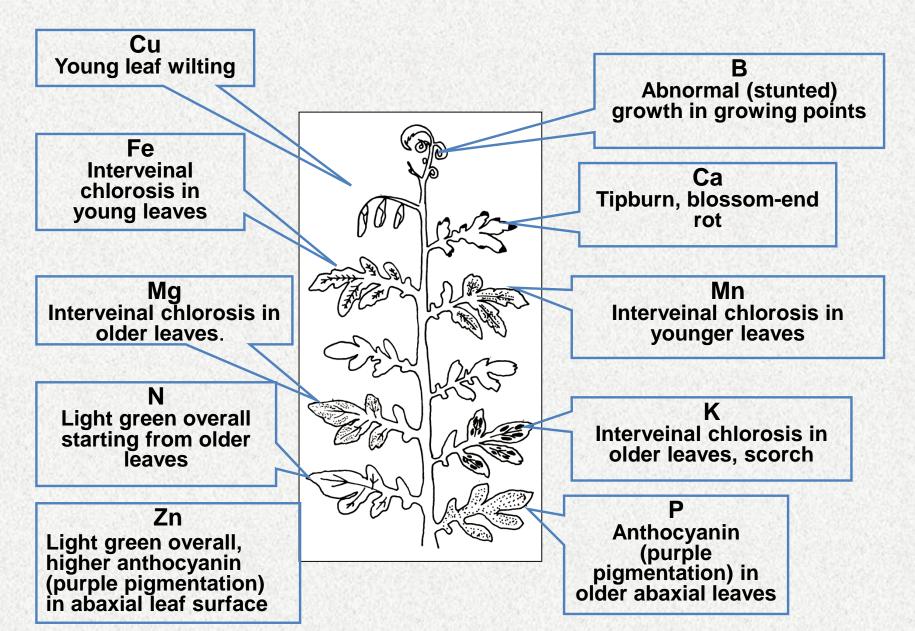

• Cations (positively charged ions)

Ammonium (NH₄⁺), Potassium (K⁺), Calcium (Ca²⁺), Magnesium (Mg²⁺), Iron (Fe²⁺, Fe³⁺), Manganese (Mn²⁺), Zinc (Zn²⁺), Copper (Cu²⁺)

Anions (negatively charged ions)
 Phosphorus (PO₄³⁻, HPO₄²⁻, H₂PO₄⁻), Nitrate (NO₃⁻), Sulfur (SO₄²⁻), Boron (BO₃²⁻), Molybdenum (MoO₄²⁻), Chloride (Cl⁻)

Nutritional Disorders

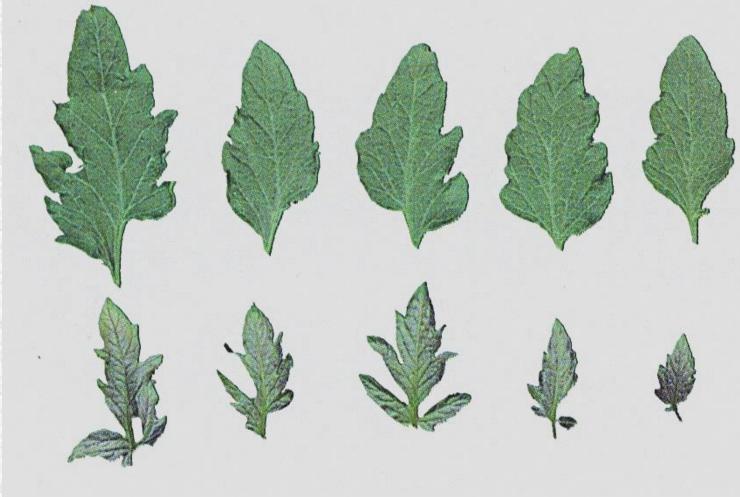
- Deficiency less nutrient is available than required in tissue
- Toxicity Excessive amount of nutrient in tissue


(Taiz and Zeiger, 2006)

Element Mobility in Plants

Mobile	Immobile
Nitrogen	Calcium
Potassium	Sulfur
Magnesium	Iron
Phosphorus	Boron
Chlorine	Copper
Sodium	
Zinc	
Molybdenum	

Do not translocate to part of the plant with highest need (i.e. growing point)


Nutrient Deficiencies in Tomatoes

Tomato plants with low N (left) and high (standard) N (right) application

Tomato leaves with standard P application (above) and low P application (bottom)

1월 방송 영양 방법, 일상, 양성 방법을 위해 방송 방법을 얻는 것이 같은 방송 방법, 일상, 양성 방법을 위해 방송 방법, 일상, 양성 방법을 위해 방송 방법

K deficiency in tomato leaves

Tomato leaves with standard K application (above) and low K application (bottom)

Tomato leaves showing magnesium deficiency – interveinal chlorosis

Tomato leaves showing iron deficiency – interveinal chlorosis

Sampling – Monitoring the Crop

Foliar

First fully expanded mature leaf Multiple plants from across greenhouse Oven dry to completely dry and grind (costs less) Regular schedule best – not waiting for symptoms

Nutrient solution

Collect drip Make a dilution 500 ml Ship no later than next day after sampling Ship overnight

Tissue Analysis

TEST	RESULTS	NORMAL RANGE
Nitrogen % N	2.65*	3.50 - 4.60
Phosphorus % P	0.51	0.20 - 0.60
Potassium % K	2.69	2.00 - 8.80
Calcium % Ca	1.08	1.00 - 2.60
Magnesium % Mg	0.31*	0.40 - 1.90
Boron ppm B	48.16*	50.00 - 175.00
Iron ppm Fe	47.29*	90.00 - 250.00
Manganese ppm Mn	73.9*	75.00 - 300.00
Copper ppm Cu	8.04	5.00 - 28.00
Zinc ppm Zn	21.51*	25.00 - 100.00
Molybdenum ppm Mo	1.53	0.20 - 5.00
Aluminum ppm Al	5.84	0.00 - 0.00
Sodium ppm Na	80.69	0.00 - 0.00
Sulfur ppm S	675.78	0.00 - 0.00

Hydroponic Solution Analysis

FERTILIZER ANALYSIS

University of Arizona	Lab ID:	051573-1
303 Forbes Building	Received:	08/25/05
PO Box 210036	Completed:	08/26/05
Tucson, AZ 85721	Phone:	520-626-3928
	Fax:	

Sample Description: Hydroponic F2 Low EC

MAJOR NUTRIENTS: *	ppm-
Nitrate (NO3-N)	181.00
Ammonium (NH4-N)	21.60
Phosphorus (P)	43.63
Potassium (K)	233.02
Calcium (Ca)	198.23
Magnesium (Mg)	22.49
MINOR NUTRIENTS	ppm-
Iron (Fe)	1.99
Manganese (Mn)	0.40
Boron (B)	0.32
Copper (Cu)	0.97
Zinc (Zn)	0.30
Molybdenum (Mo)	0.00
Sodium (Na)	49.65
Aluminum (Al)	4.45
	ppm-
pH	5.60
Conductivity (mmho/cm)	2.00

* Urea not determined

Lysimeter: A device or system to measure drip (input) and drain (output)

What we want to know:

Is drip in expected range of volume, EC and pH? *If not, what is wrong?* Controller failure, injector failure, stock made incorrectly.

Is drain in expected range of volume, EC and pH?

If not, what is wrong? Same as drip plus transpiration, root zone issues.

Tomato - Optimal Fertility Management

Nutrient	Stage 1 (ppm)	Stage 2 (ppm)	Stage 3 (ppm)	Micro (ppm)	
	Up to 2nd truss	2nd to 5th	After 5th truss	All stages	
Ν	90	120	190	В	0.34
Р	47	47	47	Mn	0.55
К	144	350	350	Cu	0.05
Са	144	160	200	Мо	0.05
Mg	60	60	60	Zn	0.33
S	116	116	116	Fe	2.00
Cl	89	89	89		

Don't Forget About CO₂

- CO₂ is an essential part of photosynthesis.
- Closed systems and winter-time growing
- CO₂ enrichment

Fertilizing with CO₂

- Combustion base system (natural gas)
- Liquid CO₂

Tips for CO₂ Enrichment

- CO₂ conc. inside a <u>closed</u> greenhouse with soilless system can be as low as ~200 ppm (half of atmosphere) during the day.
- Set point for CO₂ enrichment needs to be at an ambient or lower level when vents are open.

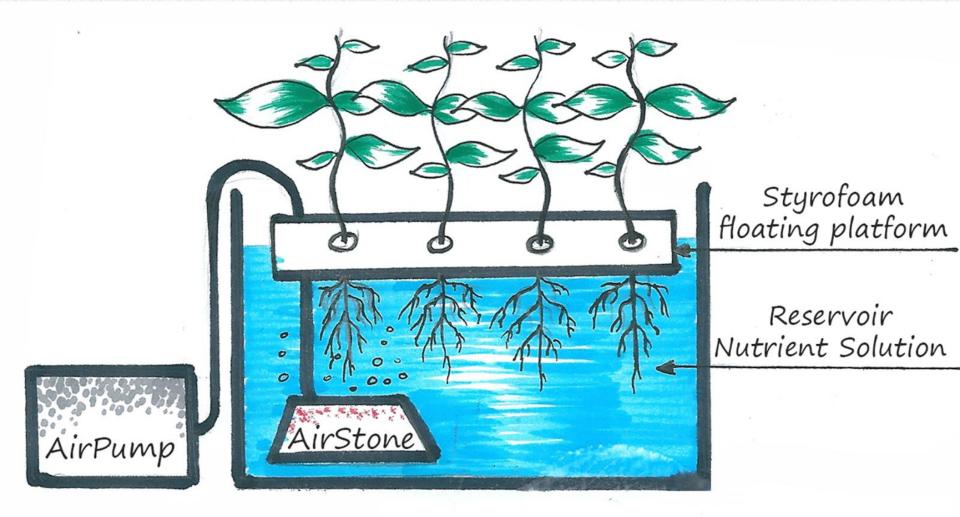
CO₂ generator based on combustion of natural gas

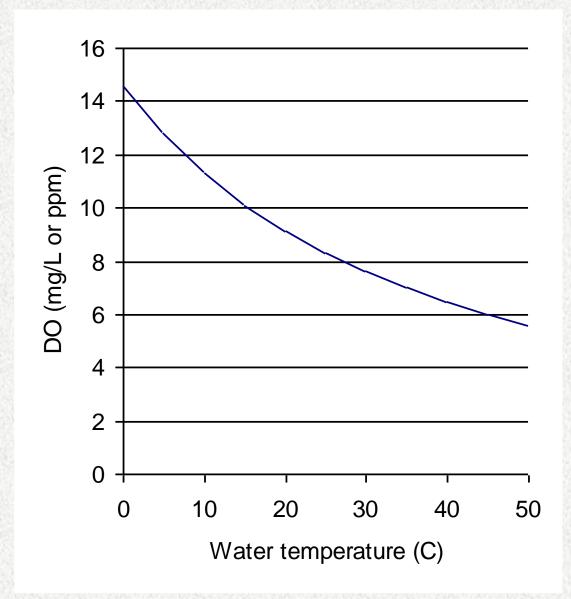
Hydroponic and Soil-less Systems

- DFT (Deep Flow Technique)
- NFT (Nutrient Film Technique or Nutrient Flow Technique)
- Soil-less culture systems
 - Rockwool
 - Other aggregates
- Aeroponics
- Others

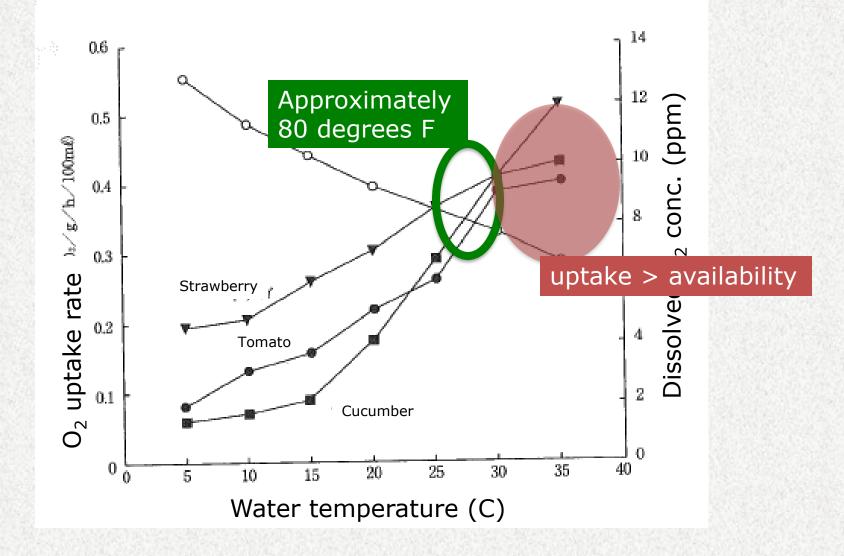
DFT (deep flow technique)

Plants are suspended through styrofoam boards which float on the surface of the nutrient solution. Since roots are entirely in the liquid, oxygen must be constantly supplied to the roots by aerating nutrient solution.

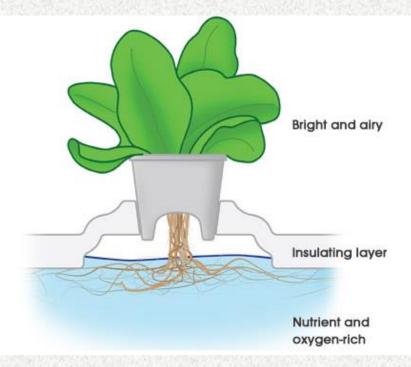



DFT based commercial-scale lettuce production unit at Cornell Univ.

Aeration is Critical in DFT Systems



Dissolved Oxygen and Temperature



Root oxygen absorption rates measured for three greenhouse crop species

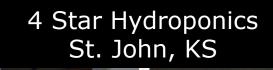
"Dry" DFT Systems

- Packaged growing system(s)
- Cultivation Systems, Viscon B.V.
- Special plastic cups and foam floats
- Efficient use of space, automation

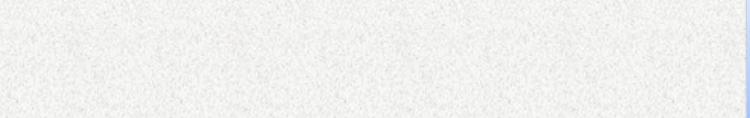
NFT (nutrient film technique)

The roots are hang into a slightly slanted tube or trough. The nutrient solution is pumped to the higher end, flows past the hanging roots and then back to the reservoir.

Oasis rooting cube


Shelton Farms Whittier, NC

Linda Gray





Ebb-and-Flow (subirrigation)

Plants are grown in trays or pots filled with substrates such as perlite, vermiculite, peat moss, foam, coconut coir, granulated rockwool, etc. in benches or in the greenhouse floor, which is flooded periodically to subirrigate.

ROD 1 RB P 8 EENS & BABY Pocket Farms Middle Pocket, NSW

Parsley-Flat

Wash Before

Aeroponics The roots are suspended in an enclosed space and, at regular intervals, sprayed with the complete nutrient solution.

Commercial lettuce production by aeroponics

Aeroponically cultivated medicinal burdock roots

Soilless culture with rockwool or other aggregates with drip irrigation

The roots grow into aggregate medium (substrate) such as sand, gravel, Rockwool, perlite, vermiculite, peat moss, foam, coconut coir, etc. and are then irrigated with a complete nutrient solution using drip irrigation.

<u>Rockwool</u> Great air : water Rapid response Industry standard

Low H₂O capacity Disposal

Both require pre-use saturation

RIOCOCO

200

000

 $\frac{\text{Coco coir}}{\text{High H}_2\text{O capacity}}$ Custom blends Widely used

Slow response Source issues

Coir-based Systems

Harbour Head Growers, Wikuku, NZ

Mixed Media Systems

Nick's Greenleaf Gardens, Kansas City, MO

Grow Bag Systems

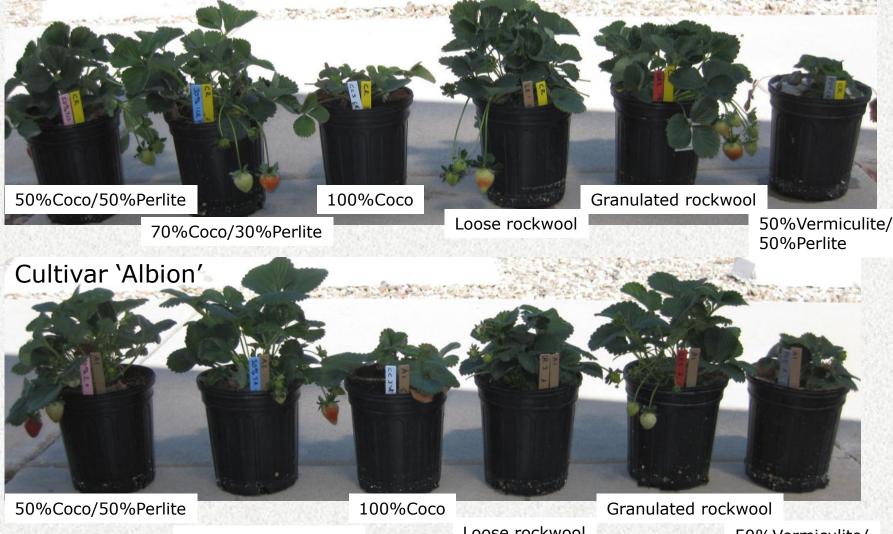
Ring's Grow and Sell, Wichita, KS

Grow Bags may contain various types of substrate/media

Grow Bag Systems

Spencer Ring

Factors for Consideration


- Plant Species
 - Oxygen requirement
 - Response to EC and porosity
 - Response to root zone restriction
 - Transpiration demand
- Growing stage
- Irrigation and nutrient delivery methods
 - Nutrient compositions and concentrations
 - Frequency
 - Container (or root-zone) size
- Substrates (if used)
 - Kind (chemical and physical characteristics)
 - Source (particularly for organic substrates)
 - Mixing ratio (if more than one kind is used)

Tomato growth/yield in different media

Media in bags	Water holding capacity (%)	Air porosity (%)	Yield (kg/plant)	Fruit size (g)
Coconut coir	88.4	23.5	10.6	196
Perlite	19.6	41.1	10.3	195
Peat-lite	84.8	20.0	9.9	193
Coir/Perlite	57.4	35.0	9.7	192
Rockwool	86.9	10.3	9.6	185

Data by M. Jensen

Substrates affect plant growth (strawberry example under ebb-and-flow irrigation) Cultivar 'Camino Real'

70%Coco/30%Perlite

Loose rockwool

50%Vermiculite/ 50%Perlite

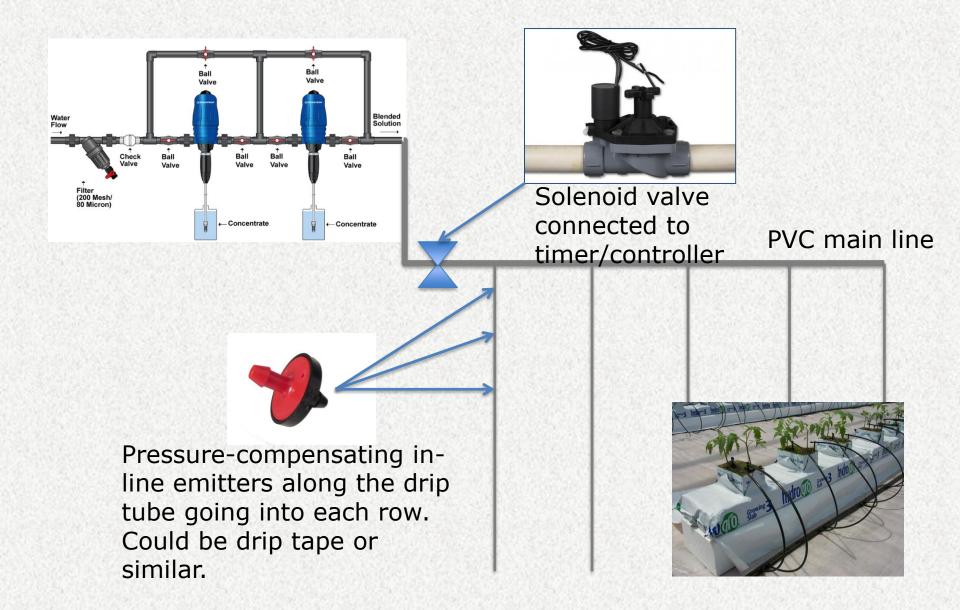
Discussion

Example 1: Tomato

- Impact of substrate is relatively small
 - Greater LAI (4-6)
 - Leaf transpiration rate: ~8 mmol m⁻² s⁻¹
 - Root respiration rate: moderate
 - Typical root-zone volume in soilless culture: 2 L per plant
 - Irrigation: up to 2-4 L per plant per day per plant (20-40 times a day)
 - Drainage rate: 30-40%

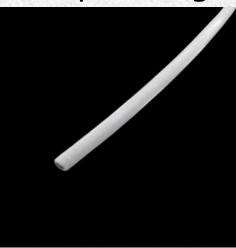
Example 2: strawberry

- Impact of substrate is relatively large
 - Smaller LAI (1-2)
 - Leaf transpiration rate: ~7 mmol m⁻² s⁻¹
 - Root respiration rate: relatively high
 - Typical root-zone volume in soilless culture: 2-3 L per plant
 - Irrigation: up to 300 mL per day per plant (3-10 times a day)
 - Drainage rate: 10-20%


Drip Irrigation With Substrate

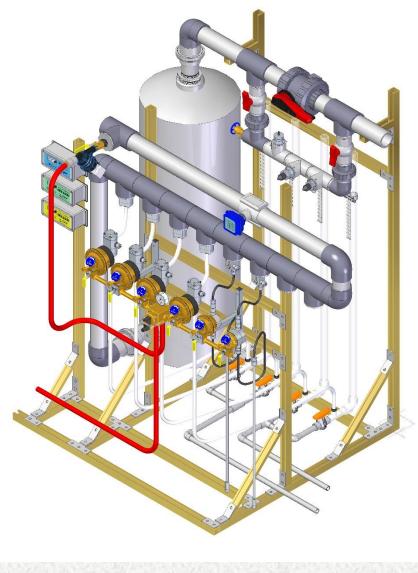
- Designed to provide small amount of nutrient solution at a time with frequent cycle.
- This way, the root zone environment (ions, O₂) can be maintained relatively constant.
- Some discharge (>30% for highwire crops) is needed to avoid ion accumulation.

 Less water-use efficient system than other soilless culture systems when no nutrient recycling is introduced.


Irrigation Lines and Emitters

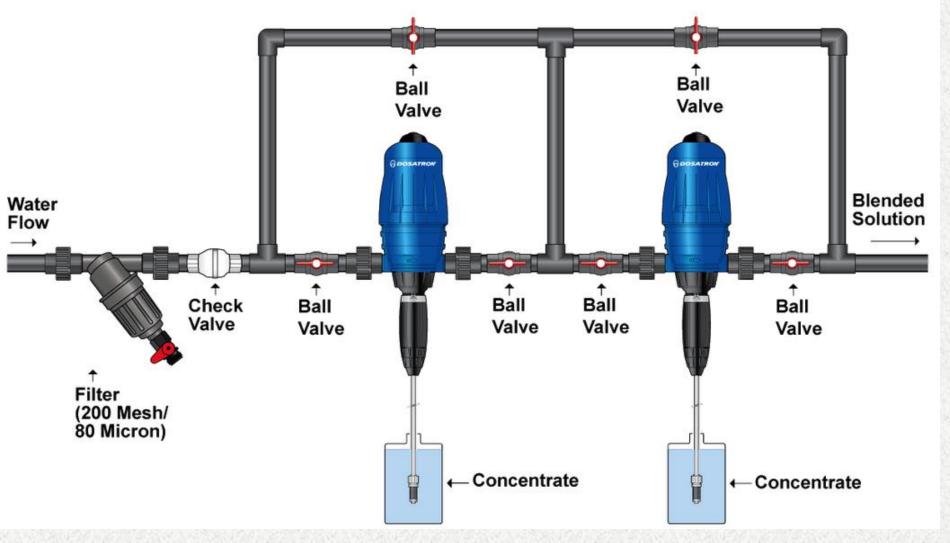
Polyethylene tubing "1/2 inch" (0.71 OD)

Drip tubing


Pressure compensated emitters (2 L/hr)

Drip stakes

Nutrient Delivery Systems



Managing Nutrient Solutions

Challenges when recycling nutrient solution

- Spread of disease
- Biofilm development
- Nutrient imbalance
 - Depletion/accumulation of specific elements
- Accumulation of toxic compounds
- Costs
- Precipitate formation

Injectors

http://www.dosatronusa.com/marketsserved/livestock/installation-tips.aspx

Why Two Injectors??

Nutrient Stock Preparation

Need to separate Ca⁺⁺ and SO₄⁻ and PO₄⁻

At 100X these react to form gypsum and calcium phosphate

 $\frac{Tank A}{KNO_{3}}$ $MgSO_{4}-7H_{2}O$ $KH_{2}PO_{4}$ $K_{2}SO_{4}$ $(NH_{4})_{2}SO_{4}$ Micronutrients
Phosphoric acid

Potassium nitrate Magnesium sulfate (Epsom salt) Mono-potassium phosphate (MKP) Potassium sulfate (Sulfate of potash) Ammonium sulfate

 $\frac{Tank B}{Ca(NO_3)_2}$ $\frac{CaCl_2}{Fe chelate}$

Calcium nitrate Calcium chloride Iron chelate (EDTA, DTPA, and EDDHA)

Nutrient Solution Disinfestation

- 1) Heat to 200° F+ for about 30 sec, then cool as quickly as possible
- 2) Ionization device uses Copper & Silver to kill microorganisms
- 3) Chlorine / Bromine injected as microbiocide
- 4) Ultra-violet light zaps recirculating solution
- 5) Ozone injection, free radicals
- 6) Filtration with membrane filters or sand

pH and EC Monitoring

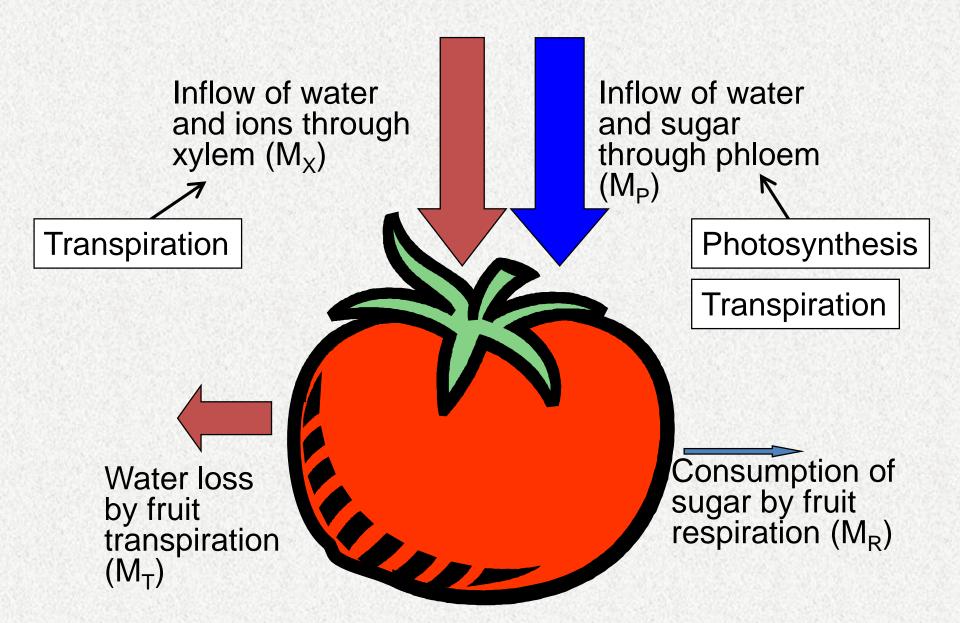
- Daily
- Lysimeter
- Input and output
- pH = -log[H⁺]

- Increases with NO₃-N fertilizer
- Must add dilute acid to maintain optimal range
- EC = electrical conductivity; total salt
 - Decreases with plant use, water additions
 - Must add fertilizer salts to avoid deficiencies

Irrigation management (EC, pH, and %discharge)

- Target EC (3.5-4.5) and Target pH (6.0-7.0) of the root zone
- For aggregate hydroponics, % discharge is maintained at ~30%
- Solar radiation (Σ , J m⁻²) based irrigation control
- 100 ml per irrigation
- **Monitoring nutrient status**
- Visual evaluation
- Solution analysis (monitoring)
- Tissue analysis

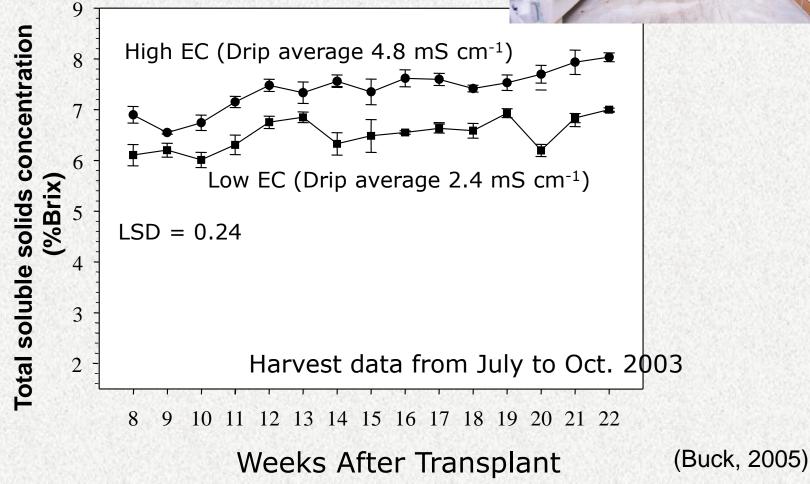
EC – Grower's Tool to Improve flavor



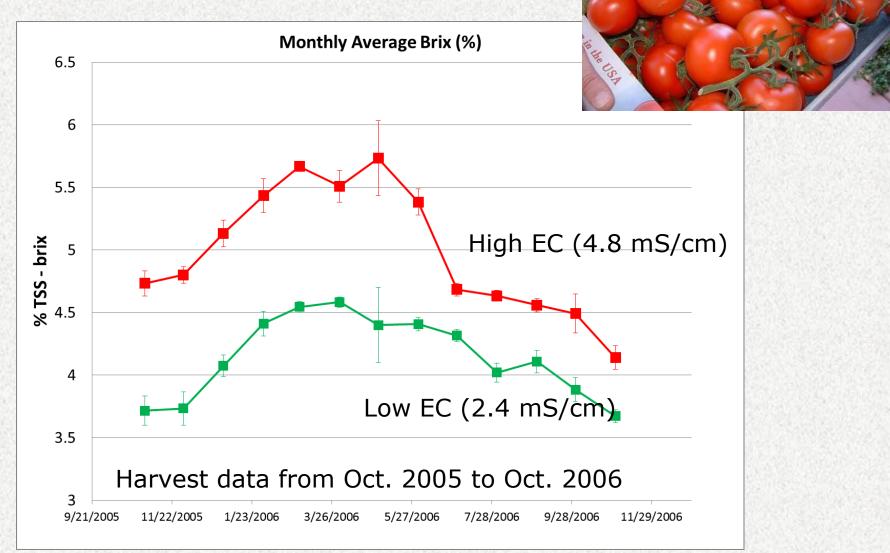
TOV type tomato under high EC (4.8 mS/cm) Brix = 4.8-6.1 Higher lycopene

TOV type tomato under standard low EC (2.4 mS/cm) Brix = 3.5-4.8

EC was increased by adding NaCl


EC in nutrient solution reduces the water fluxes to fruit, condensing sugars and acids.

How High Should the EC Be?


- EC levels need to be determined based on the climate (high light vs. low light; dry vs. wet)
- Start with a small increase (0.5 1.0 mS/cm at a time)
- Too high EC can cause BER (blossom end rot) Ca deficiency in fruit due to limited transpiration
- Control <u>drainage EC</u> in a target range (at UA, 6-8 mS/cm when applying ~4.8 mS/cm drip solution)
- Keep good (30%) drainage rate

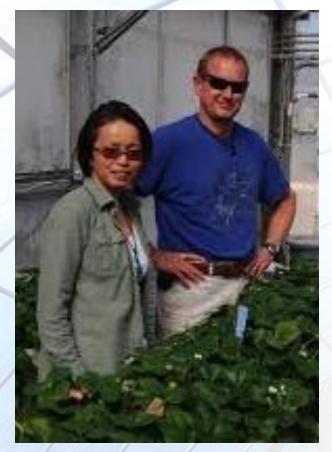
Demonstration of high EC cherry tomato production in Arizona

Demonstration of high EC TOV tomato production in Arizona

Your Choice

- 60 kg/m²
- Ordinary flavor

- 50-55 kg/m²
- High flavor


Further Resources

- "Greenhouse Hydroponics From Seed to Harvest"
 - <u>http://youtu.be/KaRIdEBegFo</u>
- "Tomatoes" A textbook edited by Dr. E. Heuvelink
 - <u>http://www.cabi.org/bookshop/book/1863</u>
- University of Arizona PLS 217 course open-access materials online (Dr. Patricia Rorabaugh)
 - <u>http://ceac.arizona.edu/pls-217-introduction-hydroponics-and-cea</u>

Hydroponic Tomato Training and Education

- University of Arizona CEAC Short Course Series
 - Annual Greenhouse Crop Production and Engineering Design
 Short Course April 2-7, 2017. Tucson, AZ
- Tomato Intensive Short Course and Hands-on
- Crop King Grower Workshop
- Mississippi State University Greenhouse Tomato Short Course
- Online courses (for further study on greenhouses)
 - Univ. of Arkansas 'Greenhouse Management'
 - Univ. of Arizona 'Greenhouse plant physiology and technology'

Acknowledgements

- Chieri Kubota
- Mark Kroggel
- Kimberly Williams

