Foliage (Carbon) based damage thresholds

Jim Flore with data from:

Des Layne, Edgardo Desenga, Mark Hubbard, Sarah Kelm, Carl Sams, Riccardo Gucci, and Ewald Kappes Poalo Sabbitini

Foliage damage thresholds

- The leaf and photosynthesis
- Yield is related to light intercepted
- However, shade effects quality
- How is carbon partitioned in fruit
- What is a damage threshold, and when is it most important to the crop (biological or environmental damage to the leaf)

The primary organ to trap energy and synthesize carbon into carbohydrates is the Leaf

- The major process that assimilates carbon dioxide into starch and sugar is Photosynthesis
- The driving force for photosynthesis is light energy from the sun.
- Therefore it isn't surprising that light interception per land area is directly related to yield.

LIGHT INTERCEPTION LIMITS YIELD (MONTHIETH; JACKSON AND PALMER

Light interception is affected by plant shape and plant density

What about Shate in the tree:

 Canopy effect on light

Close spaced Montmorency Sour cherry $10 \times 15 \mathrm{ft}$

Fruit tree responses to shade

- Morphology
- Flowering and fruiting
- Cold Hardiness

THE EFEECT OF SHADE

9\% 21\% 36\% 100\%
Thinner
Larger unless < 10\%FS Flatter
Dark Green/Blue in color

Grown in shade 36, 21, 9 \%FS
The previous Year

Fewer flower buds the following year. Threshold = 15-20\% FS

The Effect of Shade on Fruit and Vegetative Buds Developed, Peach

\% Full Sun

100 27 3
86 32 1Fruit Buds

Leaf Buds 27 40 87| Shoot Length | 16 | 16 | 8 |
| :--- | :--- | :--- | :--- |(in)

THE EFFECT OF SHADE ON COLOR IN PEACH

- RED HAVED

SHADED IN STAGE III

- FROM LEFT TO RT
- 18 DAYS SHADE
- 9 DAYS SHADE
- 6 DAYS SHADE
- 3 DAYS SHADE
- 0 SHADE

Final Swell Stage III lasted 18 days

THE EFFECT OF SHADE ON VEGETATIVE AND REPRODUCTIVE GROWTH FOR MONTMORENCY TART CHERRY

- TREE GROWTH
- LEAF SIZE
- SHOOT GROWTH
- LEAF CHLOROPHYLL
- FLOWER INITIATION
- FRUIT GROWTH
- COLD HARDINESS

THE EFFECT OF SHADE ON GROWTH AND MORPHOLOGY OF APPLE

\% SUN	100	37	25	11
\# shoots	83	90	74	60
shoot length	1934	2387	1833	1468
shoot wt	184	162	162	158
leaf thickness	11.7	8.6	7.8	6.3
girth increase	61.4	37.8	34.3	22.8
leaf area	21.1	21.7	26.9	28.8

Jackson and Palmer (1977) J. Hort. Sci. 52:245-252.

THE EFFECT OF SHADE ON \# OF FLOWER BUDS PER TREE (APPLE) COX ORANGE PIPIN

\% SUN IN $1970 \quad 100 \quad 37 \quad 25 \quad 11$

FLOWERS IN
1971
\#

159	96
100	60

69
33
43
21

Jackson and Palmer (1977) J. Hort. Sci. 52:245-252.

High density apple

FOLIAGE ANGLE

PLANOPHILE

ERECTOPHILE

PLAGIOPHILE

BRANCH ANGLE CAN CHANGE WITH STRATIFICATION

TREE SHAPE

- TRIANGLE=LESS SHADE FROM ONE ROW TO THE NEXT
- WINDOWS OF LIGHT PENETRATION

EFFECT OF ROW SPACING

- MONTMORENCY SOUR CHERRY 10’ BY 15'
- ROWS ARE TOO CLOSE TOGETHER

WIDE SPACING, TRIANGLE SHAPE

Unconventional Orchard
Design 7.21.92

$2 b \mid c \cdot t$

$\mathrm{H}=2 \mathrm{X}$

RECTANGLE=2X CLEAR ALLEY TRIANGLE=3X CLEAR ALLEY

N-S ORIENTATION IS BETTER UNDER THE FOLLOWING CONDITIONS

- Northern (southern) latitudes-because of the in coming angle of the sun
- Better at mid-summer than spring or fall
- Depends on tree height. Best if $\mathrm{H}=2 \mathrm{X}$ or more the clear alleyway width.

E-W ORIENTATION IS BETTER UNDER THE FOLLOWING CONDITIONS

- At the equator
- Spring or fall crop
- Low growing trees; best if $\mathrm{H}=1 \mathrm{X}$ the clear alley way width or less.

Threshold of Response to a Pest Stress

Response (Growth, Cropping)

Severity of Pest Effect

Peach: \# leaves/fruit

How many leaves are needed?

No demand for carbohydrate =
Lower pn rate in afternoon

The effect of leaf to fruit ration in 'Montmorency' sour cherry on growth, maturity, and carbon relations during the current season's growth.

	Leaf to fruit ration				
	0.5	1.0	2.0	4.0	
	1.1	2.2	2.9	3.1	3.4
Fruit wt (gm)	5.9	9.3	12.1	15.1	18.6
soluble solids (\%)	0.0	0.2	0.4	0.6	0.8
Color	285	426	421	375	301
Retention force (gm)	23.7	26.9	25.9	9.6	
Pn 2 (MgCO2dm-2hr-1)	--	23.7	1.2	--	0.2

${ }^{2}$ Treated June 1, 1985, measured June 18, 1985. y5uCi aplied per leaf, export determined 4 hours after application.
Sink Limitation = lower Pn rate

SOURCE LIMITATION

- MONTMORENCY, 2 LEAVES PER FRUIT
- SMALLER SIZE,
- LESS COLOR
- LESS SUGAR
- GREATER FRF

Cherry

- Leaf to Fruit Ratio
- Affect on ripening

SOURCE LIMITATION

- DECREASE IN COLD HARDINESS
- HOWELL AND STACKHOUSE 1972
- REDUCED HARDINESS, REDUCED BUD SET THE FOLLOWING SPRING CAUSED BY MID SUMMER DEFOLIATION

Harvest Effects afternoon PN

The influence of harvest on photosynthesis

Similar fruit effect on the following crops

Plum Gucci and Flore

 Apple Lakso and Flore Grape Lakso
COMPENSATION TO DAMAGE

- TOMATO
- APPLE
- POPLAR
- CHERRY
- 25% DRY WT
- 20\% DRY WT ;20\% Pn
- 40% DRY WT
- 20% Pn; DRY WT

Using a PN inhibitor as a method to simulate stress

Terbacil on cherry (Hubbard), peach (Catania) apple (Desegnia)

Pn inhibition on peach M. Catania

The Use of Whole Plant Chambers to Determine Threshold for Mite Damage in Sour Cherry

J.A. Flore ${ }^{1}$, S.L. Breitkreutz ${ }^{1}$, and J.W. Johnson ${ }^{2}$
${ }^{1}$ Department of Horticulture, Michigan State University, East Lansing, MI
${ }^{2}$ Department of Entomology, Michigan State University, East Lansing, MI

Single Leaf Photosynthesis vs Mite Days July, 1995

Single Leaf Photosynthesis (ppm)

How many mites

- A mite day $=1$ mite per day/lear
- Example 10 mites x 10 days $=100$ mite days
- Thresholds:
- High vigor 1500 mite days
- Low to moderate 1000 mite days

Influence of Crop Load

- Apple
- Cherry

PARTITIONING OF CARBON

TREATMENTS

Honeycrisp Apple, 3 orchards; Randomized complete block design 5 treatments (4 trees/treatment); Crop load adjustment applied after June drop

High Crop Load
(HCL)

~4 Fruit / Spur Natural cropping

3 Fruit / Spur or Hand-spread

Medium Crop Load
(MCL)

2 Fruit / Spur or Hand-spread

Medium-Low Crop Load
(M-LCL)
~70

1 Fruit / Spur or Hand-spread

Low Crop Load
(LCL)

1 Fruit / 2 Spur

The influence of crop load adjustment at fruit set on production characteristics of Honeycrisp at the Sparta site.

2002 Orchard

2006 Crop Load Treatment

Season	Defining Data	High	Med. High	Medium	Med. Low	Low	
2006	Fruit/TCSA	15.7	8.1	6.2	2.4	1.9	
2006 Leaf to Fruit Ratio	6.6	10.4	16.1	25.4	37.8		

2006 Crop Load Treatment

Season	Resulting Dala	High		Med. High		Medium		Med. Low		Low	
2006	Yield (kg/tree)	11.1	a	7.8	b	7.6	b	3.6	c	3.1	c
2006	Fruit weight (9)	197.2	a	211.5	b	225.3	b	269.3	c	285.0	c
2006	Fruit diameter (mm)	79.6	a	82.5	b	84.8	b	86.5	b	87.6	b
2006	Bitterpit (\%)	4.6	a	3.6	a	9.6	a	23.1	b	65.0	c

PARTITIONING

VARIATION (\%) FROM MEDIUM CROP LOAD (0)

LEAF/FRUIT RATIO 15.6

Sabbatini P., Flore J.A., 2006. HortScience Vol. 41 (4).

Fruit size distribution

1	2	3	4	5	6	7
1	2	3	4	5	6	7
<51	$51-56$	$57-63$	$64-69$	$70-75$	$76-82$	$83+$
$m m$	mm	mm	mm	mm	mm	mm

The problem of the partitioning

Conclusions

- Decide on management system (intense, moderate, or low intensity).
- Site selection is most important
- Planting system, and orchard design
- Processing or fresh market
- Damage threshold depending on market
- Fruit quality, size, color
- Timing of pest control, early better than late

