Greenhouse Supplemental Lighting: Fundamental, Benefits, and Strategies

Lighting Basics

- Three properties of light we are concerned with for greenhouse applications
 - 1. Quantity (intensity)
 - 2. Quality (color)
 - 3. Duration (photoperiod)
- All three are important in plant growth and development

Lighting Basics

- Three properties of light we are concerned with for greenhouse applications
 - 1. Quantity (intensity)
 - 2. Quality (color)
 - 3. Duration (photoperiod)
- All three are important in plant growth and development

Lighting Basics - Intensity Light is a form of energy (electromagnetic radiation)

- radiation)

 Measuring light based on what we see
 - Foot-candles, lumens, and lux
 - are common measurements
 - Based on perceived brightness
 Not appropriate for plants

Lighting Basics - Intensity

- Quantum
 - More appropriate measure for plants
 - Refers to number of photons available for photosynthesis and growth

Lighting Basics - Intensity Average greenhouse DLI in winter (U.S) North: 4-5 mol·m⁻²·d⁻¹ South: 10-12 mol·m⁻²·d⁻¹

- 3. Duration (photoperiod)
- All three are important in plant growth and development

Lighting Basics

- Three properties of light we are concerned with for greenhouse applications
 - 1. Quantity (intensity)
 - 2. Quality (color)
 - 3. Duration (photoperiod)
- All three are important in plant growth and development

Light sensor considerations						
Make sure the sensor measures µmol·m ⁻² ·s ⁻¹						
Conversions for LEDs vary by product						
	Unit	Sunlight	HPS	Metal Halide		
	Footcandles	5.02	7.62	6.60		
	Lux	54	82	71		
	µmol·m ^{−2} ·s ^{−1} (PAR)	1	1	1		
	W·m ^{−2} (PAR)	4.57	4.98	4.59		
her, P., A.J. Both, and B. Bugbee. 2017. Supplemental lighting technology, costs, and efficiency, p. 74 81 <i>In:</i> Light Management in Controlled Environments. Meister Media Worldwide.						

Measuring Light

- Light sensor considerations
 - Calibration is appropriate for light source
 400-700 nm
 - Some sensors are less flexible
 - Less expensive meters tend to be less accurate
 - Line quantum meters (multiple diodes)

Measuring Light

□ Converting µmol·m⁻²·s⁻¹ to mol·m⁻²·d⁻¹

Formula:

Example:

Measuring Light

Converting µmol·m⁻²·s⁻¹ to mol·m⁻²·d⁻¹

Formula: Instantaneous light measurement

Example: 75 µmol·m⁻²·s⁻¹

Measuring Light

□ Converting µmol·m⁻²·s⁻¹ to mol·m⁻²·d⁻¹

Formula: Instantaneous light measurement × 60 (sec/min)

Example: 75 μmol·m⁻²·s⁻¹ × 60

Measuring Light

□ Converting µmol·m⁻²·s⁻¹ to mol·m⁻²·d⁻¹

Formula:

Instantaneous light measurement \times 60 (sec/min) \times 60 (min/hour)

Example: 75 μ mol·m⁻²·s⁻¹ × 60 × 60

Measuring Light

□ Converting µmol·m⁻²·s⁻¹ to mol·m⁻²·d⁻¹

Formula:

Instantaneous light measurement \times 60 (sec/min) \times 60 (min/hour) \times operation hours

Example:

 $75 \ \mu mol \cdot m^{-2} \cdot s^{-1} \times 60 \times 60 \times 18$

Measuring Light

□ Converting µmol·m⁻²·s⁻¹ to mol·m⁻²·d⁻¹

Formula:

Instantaneous light measurement × 60 (sec/min) × 60 (min/hour) × operation hours / 1,000,000 (µmol/mol)

Example:

75 μ mol·m⁻²·s⁻¹ × 60 × 60 × 18 / 1,000,000 = 4.9 mol·m⁻²·d⁻¹

Measuring Light

□ Converting µmol·m⁻²·s⁻¹ to mol·m⁻²·d⁻¹

Formula:

Instantaneous light measurement \times 60 (sec/min) \times 60 (min/hour) \times operation hours / 1,000,000 (µmol/mol)

Example:

75 μ mol·m⁻²·s⁻¹ × 60 × 60 × 18 / 1,000,000 = 4.9 mol·m⁻²·d⁻¹

6 mol·m⁻²·d⁻¹

Measuring Light

□ Converting µmol·m⁻²·s⁻¹ to mol·m⁻²·d⁻¹

Formula:

Instantaneous light measurement \times 60 (sec/min) \times 60 (min/hour) \times operation hours / 1,000,000 (µmol/mol)

Example:

75 μ mol·m⁻²·s⁻¹ × 60 × 60 × 18 / 1,000,000 = 4.9 mol·m⁻²·d⁻¹

6 mol·m⁻²·d⁻¹ + 4.9 mol·m⁻²·d⁻¹ = **10.9 mol·m⁻²·d⁻¹**

Measuring Light

□ Converting µmol·m⁻²·s⁻¹ to mol·m⁻²·d⁻¹

Formula:

Instantaneous light measurement \times 60 (sec/min) \times 60 (min/hour) \times operation hours / 1,000,000 (µmol/mol)

Example:

75 μ mol·m⁻²·s⁻¹ × 60 × 60 × 18 / 1,000,000 = 4.9 mol·m⁻²·d⁻¹

6 mol·m⁻²·d⁻¹ + 4.9 mol·m⁻²·d⁻¹ = **10.9 mol·m⁻²·d⁻¹** Target: 10-12 mol·m⁻²·d⁻¹

Lighting Considerations Important considerations for purchase Lamp efficacy (µmol/J) Cost Type of production Production area Etc.

Li	Lighting Considerations						
	Lamp efficacy						
	Lamp	Lamp efficacy (µmol/J)					
	315 W, metal halide	1.25-1.46					
	400 W, magnetic ballast HPS	0.94					
	1000 W, magnetic ballast HPS	1.02-1.16					
	1000 W, double-ended HPS	1.70					
	Light-emitting diode (LED)	0.89-2.4					
Fisher, P., A	A.J. Both, and B. Bugbee. 2017. Supplemen 81 In: Light Management in Controlled E	tal lighting technology, costs, and efficie invironments. Meister Media Worldwide.	ncy, p. 74-				
Nelson J.A. and B. Bugbee. 2014. Economic analysis of greenhouse lighting: Light emitting diodes vs. hig intensity discharge fixtures. PLoS ONE 9(6):e99010.							

Cost per fixture	
Lamp	Cost per fixture (\$)
315 W, metal halide	500-640
400 W, magnetic ballast HPS	200
1000 W, magnetic ballast HPS	275-350
1000 W, double-ended HPS	500-600
Light-emitting diode (LED)	860-1400

Lighting Considerations

PAR output

Lamp	µmol/s per fixture
315 W, metal halide	409-491
400 W, magnetic ballast HPS	416
1000 W, magnetic ballast HPS	1090-1161
1000 W, double-ended HPS	1751-1767
Light-emitting diode (LED)	163-653

Fisher, P., A.J. Both, and B. Bugbee. 2017. Supplemental lighting technology, costs, and efficiency, p. 74-81 *In*: Light Management in Controlled Environments. Meister Media Worldwide. Nelson J.A. and B. Bugbee. 2014. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS ONE 9(6):e99010.

Lighting Considerations

- How many lamps do I need?
 - Lamp type
 - Wattage
 - Reflectors
 - Greenhouse dimensions
 - Desired intensity
- Lighting designs
- Uniformity is key
 - Always test with quantum sensor

Lighting Considerations

- Practices to get the most out of your investment
 - Only use when necessary
 - Winter months
 - Cloudy days
 - Automated control systems
 - Shut off lamps when ambient sunlight exceeds a
 - target
 - Target a specific DLI
 - Lighting is just one variable to consider

