
Microgreens: Production and Opportunities

Sprouts

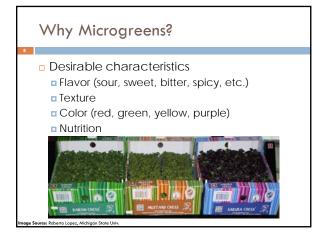
- Consume entire plant (shoots and rootlets)
- Harvest shortly after germination
- Entire production cycle <10 days</p>
- No light or fertilization required
- Microbial contamination risk

Microgreens

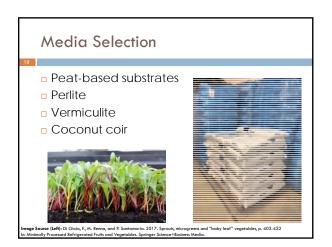
- Consume the shoot, cotyledons, and first true leaves
- Production cycle 7-21 days
- Light is required
 Limited nutrition requirement

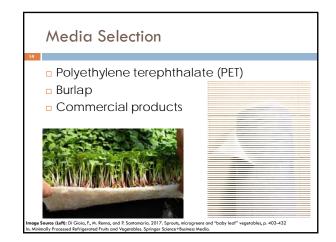
Baby Greens

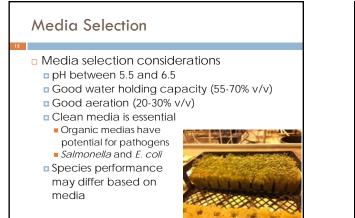
- Harvest occurs after seedling stage
 Before 8 true leaves
 - Later harvests would not be considered "baby leaves"
- Consume true leaves
- Production cycle
 - >21 days
- Light and nutrition are required



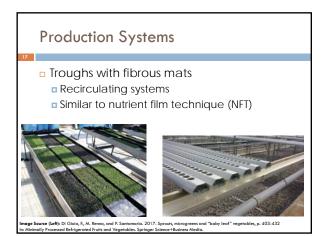
Why Microgreens? Garnish or enhancement Sold in many upscale markets and restaurants

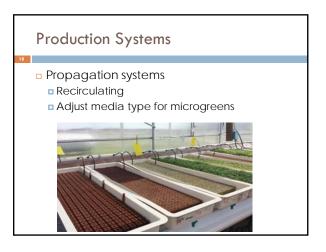







Media Selection


Rockwool propagation cubes

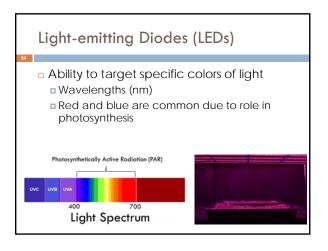


Production Overview

- □ ½ to 2" of media in tray
- Covering may be necessary for some species
 - Vermiculite
 - Germinate in darkness
- Overhead mist until germination
 - Timing differs among species
 - Soak some larger species prior (e.g. beet cilantro)

Production Overview

- High-quality pathogen-free water source
- Sub-irrigation is best to avoid excess canopy moisture
- Fertilization options
 - **5**75-150 ppm N
 - May be unnecessary for some species (fast-growing)
 - Some species accumulate high nitrates (NO₃)


Production Overview

Harvest

- 7-21 days after germination
- 🛚 1-3 in. height
- Cut just above media surface
- Also sold prior to harvest
 - Shipped along with growing media
 - Increases shelf life and freshness
 - Clamshell containers

Potential Indoor Production Multi-layered systems Sole-source lighting Light-emitting diodes (LEDs) Low output of radiant heat Target specific wavelengths Consistent quality year-round

Light-emitting Diodes (LEDs)

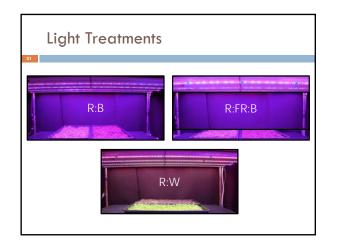
- Sole-source lighting systems to manipulate production
 - Growth attributes
 - Phytonutrients
 - Mineral nutrients
 - Coloration
- Results based on changes in light quality and intensity

Materials and Methods

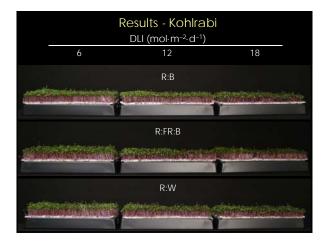
- Plant Material
 - Brassica oleracea var. gongylodes (kohlrabi)
 - Brassica juncea (mustard)
 - Brassica rapa spp. nipposinica (mizuna)
- Walk-in Environmental Chamber
 - 16-h photoperiod
 - 70/63 °F (21/17 °C) day/night (16 h/8 h)
 - 50/60% day/night relative humidity
 - **500 ppm CO**₂

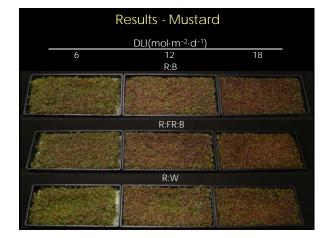
Materials and Methods

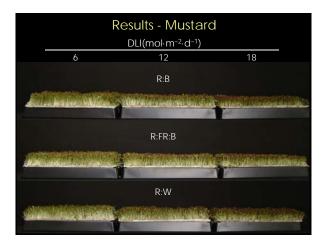
- Substrate and Fertilization
 Polyethylene terephthalate fiber pad hydroponic tray
- 300 mL of a 25% Hoagland's #1 nutrient solution added to each tray daily


Materials and Methods

- Philips Green Power LED Production Modules
- Light qualities consisting of (%):
 - 87:13 red:blue = R:B
 - 84:7:9 red:far-red:blue = R:FR:B
 - 74:18:8 red:green:blue = R:W


Materials and Methods


Daily light integral :


- 6 mol·m⁻²·d⁻¹
 - 2 modules delivering 105 µmol·m⁻²·s⁻¹
- 12 mol·m⁻²·d⁻¹
- 4 modules delivering 210 µmol·m⁻²·s⁻¹
 18 mol·m⁻²·d⁻¹
- 6 modules delivering 315 μmol·m⁻²·s⁻¹
 - Alter and the second second

Summary

Still much research that needs to be done
 How do we define high-quality microgreens?
 Can we market microgreens with increased nutritional qualities?

Acknowledgements

Ph.D. advisors

38

- Roberto Lopez
- Cary Mitchell
- Research
 - Philips Lighting
 - Hort Americas LED Lighting
 - USDA-NIFA SCRI