Apple Production for Cider Making

TERENCE BRADSHAW
UVM TREE FRUIT \& VITICULTURE SPECIALIST
GREAT PLAINS GROWERS CONFERENCE
JANUARY 8, 2016

Annual Cider Category CE Vol

[^0]
Cider Growth Across the Country

JOIN THE 를IDER REVIVAL!

Vermont Working Lands Enterprise Initiative Apple Market Optimization and Expansion through Value-Added Hard Cider Production

-Quantify production costs for apples managed specifically for hard cider production
-Identify fruit quality and yield characteristics of apple cultivars suited for hard cider production
-Coordinate fermentation trials and evaluate finished ciders made from Vermont apple cultivars

Dan Rowell, CEO VT Hard Cider Company (left) and Dr. David Conner, UVM CDAE Dept. Photo: VT Working Lands Enterprise Initiative

WORKING LANDS ENTERPRISE INITIATIVE VERMONT HARD CIDER COMPANY

Apple Growers Survey: Cidery sales ($\mathrm{n}=24$)

-6 of the growers have sold to cideries
3 growers interested in starting to sell to cideries in next 5 years

- Handshake/verbal agreement with ciders for 4 of the growers and one grower used its own apples for cider produrction
- Proportion of apples sold to cideries: ranging from 2% to 100% of production. Average 28\% of production.
- 13 different cultivars sold, most popular: 'McIntosh', 'Macoun', 'Cortland' and 'Empire'

colmerop acicicut ture and upl scinclas UNIVERSITY OF VERMONT

Apple Growers Survey: Prices received

		Price received			Target price			Average
Apple variety class	n	Mean	Min	Max	Mean	Min	Max	
Specialty cider/bittersweet	2	8.25	4	12.5	13.7	10	17.5	-5.45
Dessert variety tree pick	2	5.75	4	7.5	8.0	6.0	10.0	-2.25
Dessert variety cull	1	7.5	7.5	7.5	7.5	7.5	7.5	0
Dessert variety drop	1	-	-	-	7.5	7.5	7.5	-

Cider Makers Survey:

 Cidery size and production levels| | Mean | Median |
| :--- | :---: | :---: |
| Cideries size | | |
| Number of years in operation | $\mathbf{7 . 9}$ | $\mathbf{4 . 5}$ |
| Number of full time employees | $\mathbf{2 5 . 1}$ | $\mathbf{2 . 0}$ |
| Number of part time employees | | $\mathbf{2 . 0}$ |
| | | |
| Cider production in gallons | $\mathbf{1 , 1 2 9 , 5 7 5}$ | $\mathbf{1 , 3 5 0}$ |
| 2013 cider production | $\mathbf{1 , 1 3 0 , 1 5 0}$ | $\mathbf{1 , 3 5 0}$ |
| 2014 anticipated cider production | | |

Cider Makers Survey: Prices paid per bushel

	n	Mean	Median
Specialty cider/bittersweet variety	$\mathbf{3}$	$\$ 19.00$	$\$ 20.00$
Dessert variety (orchard-run)	$\mathbf{2}$	$\$ 4.30$	$\$ 4.30$
Dessert variety (packing house culls)	$\mathbf{1}$	$\$ 5.00$	$\$ 5.00$

Notes. When answer to quantity purchased was given in gallons, price was converted to \$U.S. per bushels where 1 bushel yields to 2.5 gallon of juice.

Cider Makers Survey

Favored apple cultivars to source locally

Dessert	Dual-Purpose	Specialty cider
Cortland (1)	Ashmeads Kernel (4)	Ashton Bitter (1)
McIntosh (1)	Calville Blanc (1)	Bittersweet (1)
Organic empire (1)	Cox's Orange Pippin (1)	Chisel Jersey (1)
Pinova (1)	Esopus Spitzenberg (4)	Dabinett (4)
	Golden Russet (4)	Ellis Bitter (2)
	Liberty (1)	Foxwhelp (1)
	Lodi (1)	Kingston Black (5)
	Northern Spy (3)	Major (1)
	Roxbury Russet (1)	Orleans Reinette (1)
		Reine des Reinnette (1)
		Somerset Redstreak (1)
		Stoke Red (1)
		Wickson (4)
		Yarlington Mill (2)

2014 WLEF: Production by cultivar \& orchard system

Cultivar	Bushels / acre	Firmness (psi)	Starch index	Soluble solids (${ }^{\circ}$ brix)
Cortland	672	15.9	3.7	10.3
Empire	932	18.8	5.0	12.8
Idared	1221	17.4	4.0	10.6
Jonagold	338	16.0	7.4	12.6
Liberty	282	17.5	6.0	11.0
Macoun	705	15.4	5.0	10.9
McIntosh	1134	15.2	4.6	11.6
Paula Red	435	17.1	3.4	11.3

2014 WLEF: Cultivar juice characteristics

| | Soluble solids
 $\left({ }^{\circ}\right.$ brix) | pH | Malic acid
 $(\mathrm{mg} / \mathrm{l})$ | Total
 polyphenols (\%) | YAN
 $(\mathrm{mg} / \mathrm{l})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |

2014 Cider Evaluation

-33 Participants

- Growers \& Cider makers
-17 Ciders, Four cidermakers
- Some replicated across multiple cidermakers
- Single cultivar
- Evaluated as components of finished cider blend
-Hedonic evaluation
- 1-5 scale of 'likeness’
- 1 = Strongly Dislike
- 3 = Neutral

- 5 = Strongly Like

Class	Cultivar	Appearance	Aroma	Sweetness	Acidity	Mouthfeel	Flavor
Sharp	Ashmead's Kern.	3.67 *	3.47 *	2.63	2.97	3.03	3.17
Sharp	Es. Spitzenburg	2.61	3.00	2.57	2.84	2.84	2.69
Sharp	Idared	2.59	2.98	2.85	2.88	2.78	2.82
Sharp	Jonagold	3.21	2.82	2.73	2.97	2.92	2.86
Sharp	Liberty	3.34	2.97	2.75	2.87	2.79	2.72
Sharp	McIntosh	2.96	2.84	2.71	2.95	2.74	2.82
Sharp	Topaz	3.13	2.90	2.35	2.69	2.54	2.41
Sharp	Wickson	3.10	2.65	2.36	2.78	2.72	2.78
Bitters	BS Blend	3.90	2.84	2.76	2.94 *	3.19	3.13 *
Bitters	Dabinett	3.81	3.19	2.59	2.55	3.00	2.39
Sweet	Cortland	3.27 *	2.65 *	2.63	2.93 *	2.68 *	2.46
Sweet	Honeycrisp	3.25	3.02	2.73	2.98	3.00	2.79
Sweet	Macoun	3.24	2.30	2.47	2.57	2.61	2.43
Sweet	Paulared	3.79	3.07	2.40	2.79	2.77	2.67
Blend	Ch Heirloom	3.28 *	3.14	3.45 *	3.21	3.34	3.34 *
Blend	Cit Blend	2.53	2.77	2.72	2.79	2.93	2.77
Blend	VHC Local Nectar	3.20	3.03	3.10	3.14	3.23	3.03

2014 Cider Evaluation by Class

| Class | Appearance | Aroma | Sweetness | Acidity | Mouthfeel | Flavor |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | :---: |
| Sharp | 3.08^{*} | 2.92 | $2.68{ }^{*}$ | 2.89 | 2.81^{*} | 2.79 * |
| Bittersweet | 3.85 | 3.02 | 2.67 | 2.74 | 3.10 | 2.76 |
| Sweet | 3.37 | 2.79 | 2.58 | 2.83 | 2.79 | 2.61 |
| Blend | 3.00 | 2.98 | 3.09 | 3.05 | 3.17 | 3.04 |

Barker's Classification of Cider Apples (LARS 1903)

Classification Acid (\%) Tannin (\%)
Sharp
>0.45
<0.2
Bittersharp
>0.45
>0.2

Bittersweet < $0.45>0.2$
Sweet $<0.45<0.2$

2015-16 Orchard Census Survey
 - Cider apple cultivars
 -Rootstocks
 - Training systems
 - Acreage
 - Yield 2013-2015

2015 Cider Production
\square

Two worlds of cider apple production

- Dessert fruit from existing/future plantings

- What are the qualities of dessert fruit from a cidermaking perspective?
- What strategies can be adopted to reduce costs of production/increase supply/improve cider quality?

Two worlds of cider apple production

- Specialty cider cultivars

- Heirloom
- Low-input scab-resistant cultivars
- Regionally-unique cultivars
- Bittersweet cultivars
- How do these cultivars perform in Vermont orchards?
- What management strategies can increase supply/profitability/cider quality?

Orchard Layout and Design

+Site aspects
+Orchard spacing (tree and row)
+Support system
+Rootstock
+Variety
+Training system
+Management

Site

Climate	Topography	Soils
- Winter Temperatures * - Spring Frosts - Length of Growing Season - Growing Degree Days - Precipitation	- Relative Elevation* - Nearness to a large body of water* - Degree of Slope - Direction of Slope	- Drainage - Moisture Holding Capacity - pH - Fertility - Organic Matter

Tree Spacing \& Training

The Shift toward Smaller Apple Trees

The Shift toward Smaller Apple Trees

Effect of tree size on light exposure

5 m
24.45% shade

4m
12% shade

http://www.theenglishappleman.com/journal_120727.asp

2.5 m
1.6\% shade

Growing cider apples in England Intensive

- 1200 trees per acre
- 1100 bushels per acre
- 15 yr life
- Unsuitable for mechanical harvesting
- High input/high output
- Labour \& water intensive
- Requires best soils \& climate
- Not economic for cider apples

European Harvest Equipment

Tree shaker

Growing cider apples in England Commodity production

- 335 trees per acre
- 850 bushels per acre
- 40 yr life
- Fully mechanised harvesting \& pruning
- Lower inputs/outputs
- 1 person per 100 acres
- Less favourable soils
- Best economic return

What Makes a 'Cider Apple’?

CIDERIES

Low purchase price? High yield?
Consistent yield
Juice characteristics

- pG, TA, Brix
- Tannin
- Aromatics

Marketing story?

APPLE GROWERS

High purchase price
Low production cost High yield?
Consistent yield
Dual purpose?
Marketability

Current Status of Cider Apple Sourcing in U.S.

Dessert culls

- Volatile market (locally)
- Reliance on 'oops' factor
- Generally large supply
- Growth in cider industry may challenge
Cultivars may be 'right' for the product

Infrastructure exists

Current Status of Cider Apple Sourcing in U.S.

Dual-purpose fruit - Infrastructure generally exists

- Older, 'back forty' orchards
- Less profitable (fresh) varieties?

- Idared	- Winesap
- Liberty	○ Golden
- Jonagold	Russet
- Northern Spy	

Current Status of Cider Apple Sourcing in U.S.

'Specialty' Cider Fruit

- Low production nationwide - Increasing supply
- Often cidery-grown or managed
- High cost/low yield?
- Applicability of production systems

Current Status of Cider Apple Sourcing in U.S.

'Specialty' Cider Fruit

- Low production nationwide - Increasing supply
- Often cidery-grown or managed
- High cost/low yield?
- Applicability of production systems

Current Status of Cider Apple Sourcing in U.S.

'Specialty’ Cider Fruit

- Low production nationwide - Increasing supply
- Often cidery-grown or managed
- High cost/low yield?
- Applicability of production systems

TwENTY COMMONLY PLANTED CIDER CULTIVARS:
The cider apple cultivars most commonly mentioned for planting in different regions of the U.S. are shown below.

Cultivar	Type	Origin
Ashmead's Kernel	SH	England
Brown Snout	BSW	England
Chisel Jersey	BSW	England
Dabinett	BSW	England
Golden Russet	SH	USA - Heritage
GoldRush	SH	USA - Modern
Harrison	SH	USA - Heritage
Harry Masters' Jersey	BSW	England
Kingston Black	BSH	England
Michelin	BSW	France
Nehou	BSW	France
Newtown/Albemarle Pippin	SH	USA - Heritage
Porter's Perfection	BSH	England
Redstreak, Hereford	SH	England
Roxbury Russet	SH	USA - Heritage
Tramlett's, Geneva ${ }^{1}$	BSH	England
Virginia Crab (Hewes)	BSH	USA - Heritage
Wickson Crab	BSH	USA - Modern
Winesap	SH	USA - Heritage
Yarlington Mill	BSW	England

mmonly Grown Cider Apple Cultivars

${ }^{1}$ Unknown variety received from Geneva, NY germplasm repository as Tramlett's Bitter (incorrectly).

Unique production challenges with bittersweet cultivars

Generic cider apple pest management calendar

Inoculum reduction: - Mites - Fire blight Early disease management - Apple scab	Disease: - Apple scab - Powdery mildew Insect - Sawfly	Disease: - Fire blight - Apple scab - Powdery mildew - Rusts Insect - No insecticides during bloom!!	$\begin{aligned} & \text { Disease: } \\ & \text { - } \frac{\text { Apple scab }}{\text { - }} \frac{\frac{\text { Powdery }}{\text { mildew }}}{\text { - }} \frac{\underline{\text { Rusts }}}{\text { Insects }} \\ & \text { - } \frac{\text { Codling }}{\text { moth }} \\ & \text { - } \frac{\text { Other leps }}{\text { Plum }} \\ & \text { curculio } \end{aligned}$	Disease - Fruit rots - Apple scab? Insects - Codling moth - Apple maggot - mites	Inoculum reduction: - Flail mow leaves to reduce scab, pest inoculum - Prune to encourage open growth habit
Green Tip	Bloom	uit Set	ummer	arvest	stharvest

Scenario 1: Packout culls from fresh market orchard

Bu/Acre	Packout	Price \#1s	sPrice Cider	Net \#1s	Net Cider	Subtotal
500	85\%	\$22	\$6	\$9,350	\$450	\$9,800
750	85\%	\$22	\$6	\$14,025	\$675	\$14,700
1000	85\%	\$22	\$6	\$18,700	\$900	\$19,600

Scenario 2:

Cider apple production orchard- Dessert cultivars

Bu/Acre	ackout	Price \#1sPrice Cider Net \#1s			Net Cider	Subtotal
500	0\%	-	\$8	-	\$4,000	\$4,000
750	0\%	-	\$8	-	\$6,000	\$6,000
1000	0\%	-	\$8	-	\$8,000	\$8,000

Scenario 3:

Cider apple production orchard- Bittersweet cultivars

Bu/Acre Packout Price \#1s Price Cider Net \#1s Net Cider Subtotal

| 500 | $\mathbf{0 \%}$ | - | $\$ 20$ | - | $\$ 10,000$ |
| ---: | :--- | :--- | :--- | :--- | :--- | $\mathbf{\$ 1 0 , 0 0 0}$

2015 Field Data

-Replicated evaluation of:

- Scab-resistant cultivars suitable (?) for cidermaking
- Early-production bittersweets \& dual-purpose cultivars
-Early screening of nonreplicated local cultivars
-M9/111, 9×14 spacing

2015 Cider Cultivar Yield Data

Cultivar	Total kg	Fruit wt (g)	TCSA $\left(\mathrm{cm}^{\wedge} 2\right)$	Yield Eff.	\% Rot
Ashmead's Kernel	7.2 ab	111.4 a	13.2 ab	0.55 bc	5.0
Calville Blanc	2.8 bc	135.1 a	20.1 a	0.17 cd	3.3
Es. Spitzenburg	2.2 bc	104.9 ab	12.3 b	0.20 cd	0.6
Brown Snout	3.3 bc	50.4 c	11.6 b	0.28 cd	4.7
Chisel Jersey	7.4 ab	61.0 c	10.8 b	0.69 b	4.5
Dabinett	4.0 bc	51.4 c	8.2 b	0.50 bc	7.2
Harry Master's Jers.	7.1 ab	72.9 bc	13.9 ab	0.51 bc	12.7
Redfield	11.1 a	99.1 ab	8.3 b	1.30 a	6.1
Tremlett's Bitter (Gen.)	0.0 c	100.0 ab	8.7 b	0.00 d	0.0
Yarlington Mill	10.4 a	50.8 c	8.9 b	1.14 a	0.1

2015 Juice Lab Results: Cider Orchard

cultivar	Brix	pH	g/L malic acid	\% Total Phenols (tannin)	$\begin{gathered} \mathrm{mg} / \mathrm{L} \\ \text { YAN } \end{gathered}$
Ashmead's Kernel	18.0	3.03	10.78	0.07	166.30
Brown Snout	18.2	3.78	4.05	0.21	97.37
Calville Blanc	15.3	3.13	9.97	0.07	86.31
Chisel Jersey	13.1	4.07	1.47	0.24	55.41
Dabinett	13.1	4.15	1.10	0.37	31.79
Harry Master's Jersey -Drop	11.6	4.35	0.99	0.23	40.63
Harry Master's Jersey -Tree	12.4	4.17	1.36	0.19	32.67
Redfield	13.6	3.16	6.50	0.33	58.55
Spitz	15.8	3.13	9.34	0.06	112.68
Tremlett Bitter -Tree	13.2	2.88	12.26	0.29	67.47
Yarlington Mill	12.2	3.78	1.67	0.35	8.88

Cider quality of SRCs

-Phenolic biosynthesis plays a critical role in Vf scab resistance (Mayr 1997)

- Some SRCs (Goldrush, Topaz) have shown significantly greater phenolics in pulp and skin than susceptible cultivars (Petkovsek, 2007)
-Vf SRCs generally developed as culinary apples, so don't expect tannins/flavenols of European cider cultivars
-Apple scab infection may increase phenolic content of fruit at the
 expense of yield (Petkovsek, 2008)

Cultivar	Brix	pH	$\begin{gathered} \mathrm{g} / \mathrm{L} \text { malic } \\ \text { acid } \end{gathered}$	\% Total Phenols (tannin)	mg/L YAN
Crimson Crisp	14.4	3.37	8.85	0.11	170
William's Pride	10.0	3.42	5.43	0.04	56
Liberty Early Harvest	10.3	3.26	7.46	0.02	100
Liberty Late Harvest	11.1	3.38	5.40	0.03	71
Liberty Ripe Harvest	11.1	3.28	6.70	0.03	72
Liberty (2014)	11.5	3.45	5.72	0.02	57
Topaz	12.4	3.35	9.86	0.06	16
Ashmead's Kernel	18.0	3.03	10.78	0.07	166
Chisel Jersey	13.1	4.07	1.47	0.24	55

Cultivar Discovery: Screening 'Natives’

-Initial evaluation of cultivars with promise

- Franklin cider apple
- Calais cider fruit
- Juice analysis \& small-lot fermentation

2015 Juice Lab Results

	Brix	$\mathbf{p H}$	$\mathbf{g} / \mathbf{\text { malic }} \mathbf{\text { acid }}$	Phenols (tannin)	$\mathbf{m g} / \mathbf{L}$ YAN
MC 1	9.3	2.94	9.03	0.22	26.71
MC 2	11.2	3.34	4.23	0.12	17.98
MC 3	8.9	3.32	4.70	0.10	9.87
MC 4	9.1	3.31	3.83	0.10	17.29
MC 5	8.8	4.01	1.10	0.10	9.29
MC 7	15.1	4.43	1.57	0.19	41.06
MC 8	11.3	3.12	8.70	0.23	27.05
MC 9	13.3	3.15	10.52	0.18	39.68
Franklin Cider Apple	16.9	2.83	7.77	0.36	28.36
Franklin Unknown Russet	16.0	3.27	12.10	0.09	93.93

2016 UVM Apple Program

Dr. Terence Bradshaw

- UVM Tree Fruit \& Viticulture Specialist College of Agriculture \& Life Science

Dr. Ann Hazelrigg

- Director, UVM Plant Diagnostic Clinic UVM Extension

Sarah Kingsley-Richards
Jessica Foster

- Research Technicians

Dr. David Conner

- Agricultural Economist UVM Dept Community Dev \& Appl Economics

Florence Becot

- Research Specialist, CDAE

Funding acknowledgements:

Vermont Working Lands Enterprise Fund

- Apple Market Optimization and Expansion through Value-Added Hard Cider Production

USDA FSMIP

- Orchard Economic Assessment to Support Vermont Hard Cider Production

USDA Extension Integrated Projects Program

- The Transdisciplinary Vermont Extension IPM Program Addressing Stakeholder Priorities and Needs for 2013-2016

Vermont Agricultural Experiment Station
Vermont Tree Fruit Growers Association
Vermont Hard Cider Company

[^0]: Source: Beer Institute, TTB and Commerce Department 2014. 2015-BBC Projections

