Utilization of Modified Atmosphere Packaging to Increase Shelf Life

Batziakas Kostas, Rivard Cary and Pliakoni Eleni Department of Horticulture & Natural Resources Kansas State University

Fresh Produce is Alive!

Fresh Produce is Alive!

Modified Atmosphere Packaging (MAP)

"The practice of changing the composition of the internal atmosphere of a produce bag/tray"

Air: 20.95% O₂ & 0.04% CO₂

MAP typically aims in an atmosphere with:

Reduced O₂

Increased CO₂

Respiration Rate 👢 Metabolism

e.g. MAP for Spinach: 3% O₂ & 10% CO₂ at 0°C (Suslow & Cantwell, 1998)

Goal: Maintain quality & extend shelf life

MAP Types

Active MAP: Flushing of the desired gas concentration

- + Rapid Atmosphere Modification
- Expensive

Passive MAP: Atmosphere is modified by product respiration rate & gas permeability of the packaging film

- + Cheap
- Long period for establishing desired atmosphere

Riviera picture: http://jero.jim2story.com/produce-item/fresh-express-riviera-blend/ (Accessed at 12/13/2016

MAP Beneficial Effects

- Slowing down ripening/senescence
- Reduction of produce sensitivity to ethylene
- Alleviation of certain physiological disorders (e.g., chilling injury)
- Reduction of produce susceptibility to post-harvest pathogens (e.g. Botrytis cinerea)
- Insect control
- High RH Maintainance

MAP Adverse Effects

Unfavorable MA conditions can cause:

- Initiation of physiological disorders & physiological breakdown
- Irregular ripening
- Development of off-flavors and off-odors
- Increased susceptibility to decay
- Stimulation of sprouting and retardation of periderm development in some root and tuber vegetables
- Moisture Condensation

MAP & Temperature

Temperature is a CRITICAL element in MAP Design

MA packaging is designed for optimum storage temperature

Temperature increase: disparity between increase in respiration rate and film permeability

O₂ depletion & CO₂ accumulation

- Irregular ripening
- Physiological disorders
- Off-flavors & Off-odor

Picture

Increased susceptibility to decay

Low O₂ Injury

High CO₂ Injury

Fruit & Vegetable O2 Tolerance Limit (Kader et al., 1989)

Minimum %O ₂	Commodities
1	Specific apple cultivars of apples and pears, broccoli, mushrooms, garlic, onion
2	Most cultivars of apples and pears, kiwifruits, apricot, cherry, nectarine, peach, plum, strawberry, papaya, pineapple, olive, cantaloupe, sweet corn, green bean, celery, lettuce, cabbage, cauliflower, Brussels sprouts
10	Avocado, persimmon, tomato, pepper, cucumber, artichoke
15	Citrus fruits, green pea, asparagus, potato, sweet potato

Fruit & Vegetable CO2 Tolerance Limit (Kader et al., 1989)

Maximum %CO₂	Commodities
2	Apple (Golden Delicious), Asian pear, European pear, apricot, grape, olive, tomato, sweet pepper, lettuce, endive, Chinese cabbage, celery, artichoke, sweet potato
5	Apple (most cultivars), peach, nectarine, plum, orange, avocado, banana, mango, papaya, kiwifruit, cranberry, pea, chili pepper, eggplant, cauliflower, cabbage, Brussels sprouts, radish, carrot
10	Grapefruit, lemon, lime, persimmon, pineapple, cucumber, summer squash, asparagus, broccoli, parsley
15	Strawberry, berries, fig, cantaloupe, sweet corn

"Postharvest treatments to improve quality and safety of locally-grown vegetables stored at non-optimum temperatures"

Helena P. Chiebao, Jacob R. Jenott, Daniel A. Unruh, Sara E. Gragg, Cary L. Rivard, Eleni Pliakoni

1st Objective

Utilize MAP at non optimum temperature for three different crops – spinach, broccoli, asparagus – to extend shelf life

- Passive MAP bags:
 - -Farmers bags (by Chandra Associates) for spinach and broccoli
 - -Produce bags (PEAKfresh USA) for asparagus
- Control: non MAP produce bags
- Produce was stored at 55 °F (Optimum ≈ 35 °F)

Conclusions

- Passive MAP bags: extend the shelf life in 4, 7 and 7 days compared to control for asparagus, broccoli and spinach respectively stored at 55 °F
- Could be an alternative for small acreage growers

Olathe

Future Research

 Investigate the use of MAP to prolong the shelf-life of organic tomato and spinach during storage in non optimum temperatures

– Investigate the effect of MAP on :

Overall

Organoleptic

Nutritional

Quality

Questions

